Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the final velocity of the two pieces of clay immediately after a perfectly inelastic collision, we need to use the principle of conservation of momentum. In a perfectly inelastic collision, the two objects stick together and move with the same final velocity after the collision.
Given:
- Mass of clay 1 ([tex]\( m_1 \)[/tex]) = 2,100 grams = 2.1 kg (since 1 kg = 1,000 grams)
- Mass of clay 2 ([tex]\( m_2 \)[/tex]) = 2,500 grams = 2.5 kg
- Initial velocity of clay 1 ([tex]\( v_1 \)[/tex]) = 20 m/s
- Initial velocity of clay 2 ([tex]\( v_2 \)[/tex]) = -10 m/s
The formula for the final velocity ([tex]\( v_f \)[/tex]) in a perfectly inelastic collision is:
[tex]\[ v_f = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} \][/tex]
Substituting the given values:
[tex]\[ v_f = \frac{(2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s})}{2.1 \, \text{kg} + 2.5 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately:
Numerator:
[tex]\[ (2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} + (-25 \, \text{kg} \cdot \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} - 25 \, \text{kg} \cdot \text{m/s} = 17 \, \text{kg} \cdot \text{m/s} \][/tex]
Denominator:
[tex]\[ 2.1 \, \text{kg} + 2.5 \, \text{kg} = 4.6 \, \text{kg} \][/tex]
Now, calculate the final velocity:
[tex]\[ v_f = \frac{17 \, \text{kg} \cdot \text{m/s}}{4.6 \, \text{kg}} \approx 3.70 \, \text{m/s} \][/tex]
Therefore, the final velocity of the two pieces of clay immediately after the collision is approximately [tex]\( 3.70 \frac{m}{s} \)[/tex].
Given:
- Mass of clay 1 ([tex]\( m_1 \)[/tex]) = 2,100 grams = 2.1 kg (since 1 kg = 1,000 grams)
- Mass of clay 2 ([tex]\( m_2 \)[/tex]) = 2,500 grams = 2.5 kg
- Initial velocity of clay 1 ([tex]\( v_1 \)[/tex]) = 20 m/s
- Initial velocity of clay 2 ([tex]\( v_2 \)[/tex]) = -10 m/s
The formula for the final velocity ([tex]\( v_f \)[/tex]) in a perfectly inelastic collision is:
[tex]\[ v_f = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} \][/tex]
Substituting the given values:
[tex]\[ v_f = \frac{(2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s})}{2.1 \, \text{kg} + 2.5 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately:
Numerator:
[tex]\[ (2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} + (-25 \, \text{kg} \cdot \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} - 25 \, \text{kg} \cdot \text{m/s} = 17 \, \text{kg} \cdot \text{m/s} \][/tex]
Denominator:
[tex]\[ 2.1 \, \text{kg} + 2.5 \, \text{kg} = 4.6 \, \text{kg} \][/tex]
Now, calculate the final velocity:
[tex]\[ v_f = \frac{17 \, \text{kg} \cdot \text{m/s}}{4.6 \, \text{kg}} \approx 3.70 \, \text{m/s} \][/tex]
Therefore, the final velocity of the two pieces of clay immediately after the collision is approximately [tex]\( 3.70 \frac{m}{s} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.