Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the final velocity of the two pieces of clay immediately after a perfectly inelastic collision, we need to use the principle of conservation of momentum. In a perfectly inelastic collision, the two objects stick together and move with the same final velocity after the collision.
Given:
- Mass of clay 1 ([tex]\( m_1 \)[/tex]) = 2,100 grams = 2.1 kg (since 1 kg = 1,000 grams)
- Mass of clay 2 ([tex]\( m_2 \)[/tex]) = 2,500 grams = 2.5 kg
- Initial velocity of clay 1 ([tex]\( v_1 \)[/tex]) = 20 m/s
- Initial velocity of clay 2 ([tex]\( v_2 \)[/tex]) = -10 m/s
The formula for the final velocity ([tex]\( v_f \)[/tex]) in a perfectly inelastic collision is:
[tex]\[ v_f = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} \][/tex]
Substituting the given values:
[tex]\[ v_f = \frac{(2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s})}{2.1 \, \text{kg} + 2.5 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately:
Numerator:
[tex]\[ (2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} + (-25 \, \text{kg} \cdot \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} - 25 \, \text{kg} \cdot \text{m/s} = 17 \, \text{kg} \cdot \text{m/s} \][/tex]
Denominator:
[tex]\[ 2.1 \, \text{kg} + 2.5 \, \text{kg} = 4.6 \, \text{kg} \][/tex]
Now, calculate the final velocity:
[tex]\[ v_f = \frac{17 \, \text{kg} \cdot \text{m/s}}{4.6 \, \text{kg}} \approx 3.70 \, \text{m/s} \][/tex]
Therefore, the final velocity of the two pieces of clay immediately after the collision is approximately [tex]\( 3.70 \frac{m}{s} \)[/tex].
Given:
- Mass of clay 1 ([tex]\( m_1 \)[/tex]) = 2,100 grams = 2.1 kg (since 1 kg = 1,000 grams)
- Mass of clay 2 ([tex]\( m_2 \)[/tex]) = 2,500 grams = 2.5 kg
- Initial velocity of clay 1 ([tex]\( v_1 \)[/tex]) = 20 m/s
- Initial velocity of clay 2 ([tex]\( v_2 \)[/tex]) = -10 m/s
The formula for the final velocity ([tex]\( v_f \)[/tex]) in a perfectly inelastic collision is:
[tex]\[ v_f = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} \][/tex]
Substituting the given values:
[tex]\[ v_f = \frac{(2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s})}{2.1 \, \text{kg} + 2.5 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately:
Numerator:
[tex]\[ (2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} + (-25 \, \text{kg} \cdot \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} - 25 \, \text{kg} \cdot \text{m/s} = 17 \, \text{kg} \cdot \text{m/s} \][/tex]
Denominator:
[tex]\[ 2.1 \, \text{kg} + 2.5 \, \text{kg} = 4.6 \, \text{kg} \][/tex]
Now, calculate the final velocity:
[tex]\[ v_f = \frac{17 \, \text{kg} \cdot \text{m/s}}{4.6 \, \text{kg}} \approx 3.70 \, \text{m/s} \][/tex]
Therefore, the final velocity of the two pieces of clay immediately after the collision is approximately [tex]\( 3.70 \frac{m}{s} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.