Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the final velocity of the two pieces of clay immediately after a perfectly inelastic collision, we need to use the principle of conservation of momentum. In a perfectly inelastic collision, the two objects stick together and move with the same final velocity after the collision.
Given:
- Mass of clay 1 ([tex]\( m_1 \)[/tex]) = 2,100 grams = 2.1 kg (since 1 kg = 1,000 grams)
- Mass of clay 2 ([tex]\( m_2 \)[/tex]) = 2,500 grams = 2.5 kg
- Initial velocity of clay 1 ([tex]\( v_1 \)[/tex]) = 20 m/s
- Initial velocity of clay 2 ([tex]\( v_2 \)[/tex]) = -10 m/s
The formula for the final velocity ([tex]\( v_f \)[/tex]) in a perfectly inelastic collision is:
[tex]\[ v_f = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} \][/tex]
Substituting the given values:
[tex]\[ v_f = \frac{(2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s})}{2.1 \, \text{kg} + 2.5 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately:
Numerator:
[tex]\[ (2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} + (-25 \, \text{kg} \cdot \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} - 25 \, \text{kg} \cdot \text{m/s} = 17 \, \text{kg} \cdot \text{m/s} \][/tex]
Denominator:
[tex]\[ 2.1 \, \text{kg} + 2.5 \, \text{kg} = 4.6 \, \text{kg} \][/tex]
Now, calculate the final velocity:
[tex]\[ v_f = \frac{17 \, \text{kg} \cdot \text{m/s}}{4.6 \, \text{kg}} \approx 3.70 \, \text{m/s} \][/tex]
Therefore, the final velocity of the two pieces of clay immediately after the collision is approximately [tex]\( 3.70 \frac{m}{s} \)[/tex].
Given:
- Mass of clay 1 ([tex]\( m_1 \)[/tex]) = 2,100 grams = 2.1 kg (since 1 kg = 1,000 grams)
- Mass of clay 2 ([tex]\( m_2 \)[/tex]) = 2,500 grams = 2.5 kg
- Initial velocity of clay 1 ([tex]\( v_1 \)[/tex]) = 20 m/s
- Initial velocity of clay 2 ([tex]\( v_2 \)[/tex]) = -10 m/s
The formula for the final velocity ([tex]\( v_f \)[/tex]) in a perfectly inelastic collision is:
[tex]\[ v_f = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 + m_2} \][/tex]
Substituting the given values:
[tex]\[ v_f = \frac{(2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s})}{2.1 \, \text{kg} + 2.5 \, \text{kg}} \][/tex]
Calculate the numerator and the denominator separately:
Numerator:
[tex]\[ (2.1 \, \text{kg} \cdot 20 \, \text{m/s}) + (2.5 \, \text{kg} \cdot (-10) \, \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} + (-25 \, \text{kg} \cdot \text{m/s}) = 42 \, \text{kg} \cdot \text{m/s} - 25 \, \text{kg} \cdot \text{m/s} = 17 \, \text{kg} \cdot \text{m/s} \][/tex]
Denominator:
[tex]\[ 2.1 \, \text{kg} + 2.5 \, \text{kg} = 4.6 \, \text{kg} \][/tex]
Now, calculate the final velocity:
[tex]\[ v_f = \frac{17 \, \text{kg} \cdot \text{m/s}}{4.6 \, \text{kg}} \approx 3.70 \, \text{m/s} \][/tex]
Therefore, the final velocity of the two pieces of clay immediately after the collision is approximately [tex]\( 3.70 \frac{m}{s} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.