Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which statement best describes the function [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex], let's analyze its characteristics step-by-step.
1. Identify the type of function:
- The function [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex] is a quadratic function because it is a polynomial with a degree of 2. The general form of a quadratic function is [tex]\( ax^2 + bx + c \)[/tex] where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants.
2. Determine if it is a one-to-one function:
- A function is one-to-one if and only if every value of [tex]\( y \)[/tex] corresponds to exactly one value of [tex]\( x \)[/tex]. For quadratic functions, they are generally not one-to-one because they are parabolic in shape (they have a U-shaped curve). This means that for some [tex]\( y \)[/tex]-values, there can be two different [tex]\( x \)[/tex]-values that produce the same [tex]\( y \)[/tex]-value. Therefore, [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex] is not a one-to-one function.
3. Determine if it is a function:
- A relation is a function if each input [tex]\( x \)[/tex] has exactly one output [tex]\( y \)[/tex]. Quadratic functions like [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex] pass the vertical line test, meaning that any vertical line drawn on the graph will intersect the curve at most once. Thus, [tex]\( f(x) \)[/tex] is indeed a function.
4. Determine if it is a many-to-one function:
- A many-to-one function is a function where multiple [tex]\( x \)[/tex]-values can map to the same [tex]\( y \)[/tex]-value. As discussed earlier, quadratic functions generally have this property. In [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex], different [tex]\( x \)[/tex]-values can produce the same [tex]\( y \)[/tex]-value, confirming that it is a many-to-one function.
5. Determine if it fails the vertical line test:
- The vertical line test is used to determine if a curve is a function. If any vertical line intersects the graph of the relation more than once, then the relation is not a function. Since [tex]\( f(x) \)[/tex] passes the vertical line test, it does not fail this test.
Based on this analysis, the correct statement that best describes the function [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex] is:
C. It is a many-to-one function.
1. Identify the type of function:
- The function [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex] is a quadratic function because it is a polynomial with a degree of 2. The general form of a quadratic function is [tex]\( ax^2 + bx + c \)[/tex] where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants.
2. Determine if it is a one-to-one function:
- A function is one-to-one if and only if every value of [tex]\( y \)[/tex] corresponds to exactly one value of [tex]\( x \)[/tex]. For quadratic functions, they are generally not one-to-one because they are parabolic in shape (they have a U-shaped curve). This means that for some [tex]\( y \)[/tex]-values, there can be two different [tex]\( x \)[/tex]-values that produce the same [tex]\( y \)[/tex]-value. Therefore, [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex] is not a one-to-one function.
3. Determine if it is a function:
- A relation is a function if each input [tex]\( x \)[/tex] has exactly one output [tex]\( y \)[/tex]. Quadratic functions like [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex] pass the vertical line test, meaning that any vertical line drawn on the graph will intersect the curve at most once. Thus, [tex]\( f(x) \)[/tex] is indeed a function.
4. Determine if it is a many-to-one function:
- A many-to-one function is a function where multiple [tex]\( x \)[/tex]-values can map to the same [tex]\( y \)[/tex]-value. As discussed earlier, quadratic functions generally have this property. In [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex], different [tex]\( x \)[/tex]-values can produce the same [tex]\( y \)[/tex]-value, confirming that it is a many-to-one function.
5. Determine if it fails the vertical line test:
- The vertical line test is used to determine if a curve is a function. If any vertical line intersects the graph of the relation more than once, then the relation is not a function. Since [tex]\( f(x) \)[/tex] passes the vertical line test, it does not fail this test.
Based on this analysis, the correct statement that best describes the function [tex]\( f(x) = 2x^2 - 3x + 1 \)[/tex] is:
C. It is a many-to-one function.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.