Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which condition must be true about [tex]\( m \)[/tex], we first need to understand the concept of slope in the context of linear equations in the [tex]\( xy \)[/tex]-plane.
The general form of a linear equation is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] represents the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
Given the two lines:
1. [tex]\( y = mx - 4 \)[/tex]
2. [tex]\( y = x - 4 \)[/tex]
We can identify the slopes of these lines:
- For the first line, [tex]\( y = mx - 4 \)[/tex], the slope is [tex]\( m \)[/tex].
- For the second line, [tex]\( y = x - 4 \)[/tex], the slope is [tex]\( 1 \)[/tex].
The problem states that the slope of the line [tex]\( y = mx - 4 \)[/tex] is less than the slope of the line [tex]\( y = x - 4 \)[/tex]. Mathematically, this can be written as:
[tex]\[ m < 1 \][/tex]
This inequality indicates that the value of [tex]\( m \)[/tex] must be less than 1.
Now, let's review the given options to see which one fits this condition:
- [tex]\( m = -1 \)[/tex]: This is less than 1, so this condition could be true.
- [tex]\( m = 1 \)[/tex]: This is equal to 1, not less than 1, so this condition is not true.
- [tex]\( m < 1 \)[/tex]: This directly matches our derived condition, so it must be true.
- [tex]\( m > 1 \)[/tex]: This is greater than 1, so this condition is not true.
Therefore, the option that must be true is:
[tex]\[ m < 1 \][/tex]
The general form of a linear equation is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] represents the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
Given the two lines:
1. [tex]\( y = mx - 4 \)[/tex]
2. [tex]\( y = x - 4 \)[/tex]
We can identify the slopes of these lines:
- For the first line, [tex]\( y = mx - 4 \)[/tex], the slope is [tex]\( m \)[/tex].
- For the second line, [tex]\( y = x - 4 \)[/tex], the slope is [tex]\( 1 \)[/tex].
The problem states that the slope of the line [tex]\( y = mx - 4 \)[/tex] is less than the slope of the line [tex]\( y = x - 4 \)[/tex]. Mathematically, this can be written as:
[tex]\[ m < 1 \][/tex]
This inequality indicates that the value of [tex]\( m \)[/tex] must be less than 1.
Now, let's review the given options to see which one fits this condition:
- [tex]\( m = -1 \)[/tex]: This is less than 1, so this condition could be true.
- [tex]\( m = 1 \)[/tex]: This is equal to 1, not less than 1, so this condition is not true.
- [tex]\( m < 1 \)[/tex]: This directly matches our derived condition, so it must be true.
- [tex]\( m > 1 \)[/tex]: This is greater than 1, so this condition is not true.
Therefore, the option that must be true is:
[tex]\[ m < 1 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.