At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! To estimate [tex]\( y(1) \)[/tex] using Euler's method for the initial value problem [tex]\( y' = -5x + y^2 \)[/tex] with [tex]\( y(0) = 1 \)[/tex] and a step size [tex]\( h = 0.2 \)[/tex], follow these steps:
### Step-by-Step Solution
1. Initialize the variables:
- Start with [tex]\( x_0 = 0 \)[/tex]
- [tex]\( y_0 = 1 \)[/tex]
- Step size [tex]\( h = 0.2 \)[/tex]
2. Euler's method formula:
- The general formula for the next value in Euler’s method is:
[tex]\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \][/tex]
where [tex]\( f(x, y) = -5x + y^2 \)[/tex]
3. Perform iterations until [tex]\( x \)[/tex] reaches 1:
- First step (from [tex]\( x_0 = 0 \)[/tex] to [tex]\( x_1 = 0.2 \)[/tex]):
[tex]\[ f(x_0, y_0) = f(0, 1) = -5(0) + 1^2 = 1 \][/tex]
[tex]\[ y_1 = y_0 + h \cdot f(x_0, y_0) = 1 + 0.2 \cdot 1 = 1.2 \][/tex]
- Second step (from [tex]\( x_1 = 0.2 \)[/tex] to [tex]\( x_2 = 0.4 \)[/tex]):
[tex]\[ f(x_1, y_1) = f(0.2, 1.2) = -5(0.2) + 1.2^2 = -1 + 1.44 = 0.44 \][/tex]
[tex]\[ y_2 = y_1 + h \cdot f(x_1, y_1) = 1.2 + 0.2 \cdot 0.44 = 1.2 + 0.088 = 1.288 \][/tex]
- Third step (from [tex]\( x_2 = 0.4 \)[/tex] to [tex]\( x_3 = 0.6 \)[/tex]):
[tex]\[ f(x_2, y_2) = f(0.4, 1.288) = -5(0.4) + 1.288^2 = -2 + 1.658944 = -0.341056 \][/tex]
[tex]\[ y_3 = y_2 + h \cdot f(x_2, y_2) = 1.288 + 0.2 \cdot -0.341056 = 1.288 - 0.0682112 = 1.2197888 \][/tex]
- Fourth step (from [tex]\( x_3 = 0.6 \)[/tex] to [tex]\( x_4 = 0.8 \)[/tex]):
[tex]\[ f(x_3, y_3) = f(0.6, 1.2197888) = -5(0.6) + 1.2197888^2 = -3 + 1.4878534994 = -1.5121465006 \][/tex]
[tex]\[ y_4 = y_3 + h \cdot f(x_3, y_3) = 1.2197888 + 0.2 \cdot -1.5121465006 = 1.2197888 - 0.3024293 = 0.9173592 \][/tex]
- Fifth step (from [tex]\( x_4 = 0.8 \)[/tex] to [tex]\( x_5 = 1.0 \)[/tex]):
[tex]\[ f(x_4, y_4) = f(0.8, 0.9173592) = -5(0.8) + 0.9173592^2 = -4 + 0.8415456482 = -3.1584543518 \][/tex]
[tex]\[ y_5 = y_4 + h \cdot f(x_4, y_4) = 0.9173592 + 0.2 \cdot -3.1584543518 = 0.9173592 - 0.6316908704 = 0.2856777248 \][/tex]
Thus, after applying Euler’s method with a step size of 0.2, the approximate value of [tex]\( y(1) \)[/tex] is:
[tex]\[ y(1) \approx 0.2856777247248985 \][/tex]
This concludes the estimation of [tex]\( y(1) \)[/tex] using Euler's method for the given initial value problem.
### Step-by-Step Solution
1. Initialize the variables:
- Start with [tex]\( x_0 = 0 \)[/tex]
- [tex]\( y_0 = 1 \)[/tex]
- Step size [tex]\( h = 0.2 \)[/tex]
2. Euler's method formula:
- The general formula for the next value in Euler’s method is:
[tex]\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \][/tex]
where [tex]\( f(x, y) = -5x + y^2 \)[/tex]
3. Perform iterations until [tex]\( x \)[/tex] reaches 1:
- First step (from [tex]\( x_0 = 0 \)[/tex] to [tex]\( x_1 = 0.2 \)[/tex]):
[tex]\[ f(x_0, y_0) = f(0, 1) = -5(0) + 1^2 = 1 \][/tex]
[tex]\[ y_1 = y_0 + h \cdot f(x_0, y_0) = 1 + 0.2 \cdot 1 = 1.2 \][/tex]
- Second step (from [tex]\( x_1 = 0.2 \)[/tex] to [tex]\( x_2 = 0.4 \)[/tex]):
[tex]\[ f(x_1, y_1) = f(0.2, 1.2) = -5(0.2) + 1.2^2 = -1 + 1.44 = 0.44 \][/tex]
[tex]\[ y_2 = y_1 + h \cdot f(x_1, y_1) = 1.2 + 0.2 \cdot 0.44 = 1.2 + 0.088 = 1.288 \][/tex]
- Third step (from [tex]\( x_2 = 0.4 \)[/tex] to [tex]\( x_3 = 0.6 \)[/tex]):
[tex]\[ f(x_2, y_2) = f(0.4, 1.288) = -5(0.4) + 1.288^2 = -2 + 1.658944 = -0.341056 \][/tex]
[tex]\[ y_3 = y_2 + h \cdot f(x_2, y_2) = 1.288 + 0.2 \cdot -0.341056 = 1.288 - 0.0682112 = 1.2197888 \][/tex]
- Fourth step (from [tex]\( x_3 = 0.6 \)[/tex] to [tex]\( x_4 = 0.8 \)[/tex]):
[tex]\[ f(x_3, y_3) = f(0.6, 1.2197888) = -5(0.6) + 1.2197888^2 = -3 + 1.4878534994 = -1.5121465006 \][/tex]
[tex]\[ y_4 = y_3 + h \cdot f(x_3, y_3) = 1.2197888 + 0.2 \cdot -1.5121465006 = 1.2197888 - 0.3024293 = 0.9173592 \][/tex]
- Fifth step (from [tex]\( x_4 = 0.8 \)[/tex] to [tex]\( x_5 = 1.0 \)[/tex]):
[tex]\[ f(x_4, y_4) = f(0.8, 0.9173592) = -5(0.8) + 0.9173592^2 = -4 + 0.8415456482 = -3.1584543518 \][/tex]
[tex]\[ y_5 = y_4 + h \cdot f(x_4, y_4) = 0.9173592 + 0.2 \cdot -3.1584543518 = 0.9173592 - 0.6316908704 = 0.2856777248 \][/tex]
Thus, after applying Euler’s method with a step size of 0.2, the approximate value of [tex]\( y(1) \)[/tex] is:
[tex]\[ y(1) \approx 0.2856777247248985 \][/tex]
This concludes the estimation of [tex]\( y(1) \)[/tex] using Euler's method for the given initial value problem.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.