Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! To estimate [tex]\( y(1) \)[/tex] using Euler's method for the initial value problem [tex]\( y' = -5x + y^2 \)[/tex] with [tex]\( y(0) = 1 \)[/tex] and a step size [tex]\( h = 0.2 \)[/tex], follow these steps:
### Step-by-Step Solution
1. Initialize the variables:
- Start with [tex]\( x_0 = 0 \)[/tex]
- [tex]\( y_0 = 1 \)[/tex]
- Step size [tex]\( h = 0.2 \)[/tex]
2. Euler's method formula:
- The general formula for the next value in Euler’s method is:
[tex]\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \][/tex]
where [tex]\( f(x, y) = -5x + y^2 \)[/tex]
3. Perform iterations until [tex]\( x \)[/tex] reaches 1:
- First step (from [tex]\( x_0 = 0 \)[/tex] to [tex]\( x_1 = 0.2 \)[/tex]):
[tex]\[ f(x_0, y_0) = f(0, 1) = -5(0) + 1^2 = 1 \][/tex]
[tex]\[ y_1 = y_0 + h \cdot f(x_0, y_0) = 1 + 0.2 \cdot 1 = 1.2 \][/tex]
- Second step (from [tex]\( x_1 = 0.2 \)[/tex] to [tex]\( x_2 = 0.4 \)[/tex]):
[tex]\[ f(x_1, y_1) = f(0.2, 1.2) = -5(0.2) + 1.2^2 = -1 + 1.44 = 0.44 \][/tex]
[tex]\[ y_2 = y_1 + h \cdot f(x_1, y_1) = 1.2 + 0.2 \cdot 0.44 = 1.2 + 0.088 = 1.288 \][/tex]
- Third step (from [tex]\( x_2 = 0.4 \)[/tex] to [tex]\( x_3 = 0.6 \)[/tex]):
[tex]\[ f(x_2, y_2) = f(0.4, 1.288) = -5(0.4) + 1.288^2 = -2 + 1.658944 = -0.341056 \][/tex]
[tex]\[ y_3 = y_2 + h \cdot f(x_2, y_2) = 1.288 + 0.2 \cdot -0.341056 = 1.288 - 0.0682112 = 1.2197888 \][/tex]
- Fourth step (from [tex]\( x_3 = 0.6 \)[/tex] to [tex]\( x_4 = 0.8 \)[/tex]):
[tex]\[ f(x_3, y_3) = f(0.6, 1.2197888) = -5(0.6) + 1.2197888^2 = -3 + 1.4878534994 = -1.5121465006 \][/tex]
[tex]\[ y_4 = y_3 + h \cdot f(x_3, y_3) = 1.2197888 + 0.2 \cdot -1.5121465006 = 1.2197888 - 0.3024293 = 0.9173592 \][/tex]
- Fifth step (from [tex]\( x_4 = 0.8 \)[/tex] to [tex]\( x_5 = 1.0 \)[/tex]):
[tex]\[ f(x_4, y_4) = f(0.8, 0.9173592) = -5(0.8) + 0.9173592^2 = -4 + 0.8415456482 = -3.1584543518 \][/tex]
[tex]\[ y_5 = y_4 + h \cdot f(x_4, y_4) = 0.9173592 + 0.2 \cdot -3.1584543518 = 0.9173592 - 0.6316908704 = 0.2856777248 \][/tex]
Thus, after applying Euler’s method with a step size of 0.2, the approximate value of [tex]\( y(1) \)[/tex] is:
[tex]\[ y(1) \approx 0.2856777247248985 \][/tex]
This concludes the estimation of [tex]\( y(1) \)[/tex] using Euler's method for the given initial value problem.
### Step-by-Step Solution
1. Initialize the variables:
- Start with [tex]\( x_0 = 0 \)[/tex]
- [tex]\( y_0 = 1 \)[/tex]
- Step size [tex]\( h = 0.2 \)[/tex]
2. Euler's method formula:
- The general formula for the next value in Euler’s method is:
[tex]\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \][/tex]
where [tex]\( f(x, y) = -5x + y^2 \)[/tex]
3. Perform iterations until [tex]\( x \)[/tex] reaches 1:
- First step (from [tex]\( x_0 = 0 \)[/tex] to [tex]\( x_1 = 0.2 \)[/tex]):
[tex]\[ f(x_0, y_0) = f(0, 1) = -5(0) + 1^2 = 1 \][/tex]
[tex]\[ y_1 = y_0 + h \cdot f(x_0, y_0) = 1 + 0.2 \cdot 1 = 1.2 \][/tex]
- Second step (from [tex]\( x_1 = 0.2 \)[/tex] to [tex]\( x_2 = 0.4 \)[/tex]):
[tex]\[ f(x_1, y_1) = f(0.2, 1.2) = -5(0.2) + 1.2^2 = -1 + 1.44 = 0.44 \][/tex]
[tex]\[ y_2 = y_1 + h \cdot f(x_1, y_1) = 1.2 + 0.2 \cdot 0.44 = 1.2 + 0.088 = 1.288 \][/tex]
- Third step (from [tex]\( x_2 = 0.4 \)[/tex] to [tex]\( x_3 = 0.6 \)[/tex]):
[tex]\[ f(x_2, y_2) = f(0.4, 1.288) = -5(0.4) + 1.288^2 = -2 + 1.658944 = -0.341056 \][/tex]
[tex]\[ y_3 = y_2 + h \cdot f(x_2, y_2) = 1.288 + 0.2 \cdot -0.341056 = 1.288 - 0.0682112 = 1.2197888 \][/tex]
- Fourth step (from [tex]\( x_3 = 0.6 \)[/tex] to [tex]\( x_4 = 0.8 \)[/tex]):
[tex]\[ f(x_3, y_3) = f(0.6, 1.2197888) = -5(0.6) + 1.2197888^2 = -3 + 1.4878534994 = -1.5121465006 \][/tex]
[tex]\[ y_4 = y_3 + h \cdot f(x_3, y_3) = 1.2197888 + 0.2 \cdot -1.5121465006 = 1.2197888 - 0.3024293 = 0.9173592 \][/tex]
- Fifth step (from [tex]\( x_4 = 0.8 \)[/tex] to [tex]\( x_5 = 1.0 \)[/tex]):
[tex]\[ f(x_4, y_4) = f(0.8, 0.9173592) = -5(0.8) + 0.9173592^2 = -4 + 0.8415456482 = -3.1584543518 \][/tex]
[tex]\[ y_5 = y_4 + h \cdot f(x_4, y_4) = 0.9173592 + 0.2 \cdot -3.1584543518 = 0.9173592 - 0.6316908704 = 0.2856777248 \][/tex]
Thus, after applying Euler’s method with a step size of 0.2, the approximate value of [tex]\( y(1) \)[/tex] is:
[tex]\[ y(1) \approx 0.2856777247248985 \][/tex]
This concludes the estimation of [tex]\( y(1) \)[/tex] using Euler's method for the given initial value problem.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.