At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the given integral step by step.
We start by performing a partial fraction decomposition of the integrand.
### Step 1: Partial Fraction Decomposition
Given the integral:
[tex]\[ \int \frac{3x+5}{(x+1)(x-1)^2} \, dx \][/tex]
We want to decompose [tex]\(\frac{3x+5}{(x+1)(x-1)^2}\)[/tex] into simpler fractions. The appropriate form for the partial fraction decomposition is:
[tex]\[ \frac{3x+5}{(x+1)(x-1)^2} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2} \][/tex]
### Step 2: Finding Coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]
To find the constants [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex], we write:
[tex]\[ 3x + 5 = A(x-1)^2 + B(x+1) + C(x+1)(x-1) \][/tex]
Expanding and simplifying:
[tex]\[ 3x + 5 = A(x^2 - 2x + 1) + B(x + 1) + C(x^2 - 1) \][/tex]
[tex]\[ 3x + 5 = Ax^2 - 2Ax + A + Bx + B + Cx^2 - C \][/tex]
[tex]\[ 3x + 5 = (A + C)x^2 + (-2A + B)x + (A + B - C) \][/tex]
By equating coefficients of [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant term, we get three equations:
1. For [tex]\(x^2\)[/tex]: [tex]\(A + C = 0\)[/tex]
2. For [tex]\(x\)[/tex]: [tex]\(-2A + B = 3\)[/tex]
3. For constants: [tex]\(A + B - C = 5\)[/tex]
From equation (1):
[tex]\[ C = -A \][/tex]
Substitute [tex]\(C = -A\)[/tex] into equations (2) and (3):
[tex]\[ -2A + B = 3 \quad \text{(2)} \][/tex]
[tex]\[ A + B - (-A) = 5 \quad \text{(3)} \][/tex]
Simplifying equation (3):
[tex]\[ A + B + A = 5 \][/tex]
[tex]\[ 2A + B = 5 \quad \text{(3)} \][/tex]
Now we have:
1. [tex]\(-2A + B = 3\)[/tex]
2. [tex]\(2A + B = 5\)[/tex]
Subtract equation (1) from equation (2):
[tex]\[ [(2A + B) - (-2A + B)] = 5 - 3 \][/tex]
[tex]\[ 4A = 2 \][/tex]
[tex]\[ A = \frac{1}{2} \][/tex]
[tex]\[ C = -A = -\frac{1}{2} \][/tex]
Now substitute [tex]\(A = \frac{1}{2}\)[/tex] into either equation to find [tex]\(B\)[/tex]:
[tex]\[ 2(\frac{1}{2}) + B = 5 \][/tex]
[tex]\[ 1 + B = 5 \][/tex]
[tex]\[ B = 4 \][/tex]
So, we have:
[tex]\[ A = \frac{1}{2}, \quad B = 4, \quad C = -\frac{1}{2} \][/tex]
Thus the partial fraction decomposition is:
[tex]\[ \frac{3x+5}{(x+1)(x-1)^2} = \frac{\frac{1}{2}}{x+1} + \frac{4}{x-1} - \frac{\frac{1}{2}}{(x-1)^2} \][/tex]
### Step 3: Integrating Each Term
Now, we integrate each term separately:
[tex]\[ \int \frac{3x+5}{(x+1)(x-1)^2} \, dx = \int \left( \frac{\frac{1}{2}}{x+1} + \frac{4}{x-1} - \frac{\frac{1}{2}}{(x-1)^2} \right) \, dx \][/tex]
[tex]\[ = \frac{1}{2} \int \frac{1}{x+1} \, dx + 4 \int \frac{1}{x-1} \, dx - \frac{1}{2} \int \frac{1}{(x-1)^2} \, dx \][/tex]
Integrating each term:
[tex]\[ \int \frac{1}{x+1} \, dx = \ln|x+1| + C_1 \][/tex]
[tex]\[ \int \frac{1}{x-1} \, dx = \ln|x-1| + C_2 \][/tex]
[tex]\[ \int \frac{1}{(x-1)^2} \, dx = -\frac{1}{x-1} + C_3 \][/tex]
Combining these, we get:
[tex]\[ \frac{1}{2} \ln|x+1| + 4 \ln|x-1| - \frac{1}{2} \left( -\frac{1}{x-1} \right) + C \][/tex]
Simplifying this, we have:
[tex]\[ \frac{1}{2} \ln|x+1| + 4 \ln|x-1| + \frac{1}{2(x-1)} + C \][/tex]
Using logarithm properties, we can combine the logarithms:
[tex]\[ \boxed{-\frac{1}{2} \ln|x-1| + \frac{1}{2} \ln|x+1| - \frac{4}{x-1} + C} \][/tex]
This is the final answer:
[tex]\[ \boxed{-\frac{1}{2} \ln|x-1| + \frac{1}{2} \ln|x+1| - \frac{4}{x-1} + C} \][/tex]
We start by performing a partial fraction decomposition of the integrand.
### Step 1: Partial Fraction Decomposition
Given the integral:
[tex]\[ \int \frac{3x+5}{(x+1)(x-1)^2} \, dx \][/tex]
We want to decompose [tex]\(\frac{3x+5}{(x+1)(x-1)^2}\)[/tex] into simpler fractions. The appropriate form for the partial fraction decomposition is:
[tex]\[ \frac{3x+5}{(x+1)(x-1)^2} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2} \][/tex]
### Step 2: Finding Coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]
To find the constants [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex], we write:
[tex]\[ 3x + 5 = A(x-1)^2 + B(x+1) + C(x+1)(x-1) \][/tex]
Expanding and simplifying:
[tex]\[ 3x + 5 = A(x^2 - 2x + 1) + B(x + 1) + C(x^2 - 1) \][/tex]
[tex]\[ 3x + 5 = Ax^2 - 2Ax + A + Bx + B + Cx^2 - C \][/tex]
[tex]\[ 3x + 5 = (A + C)x^2 + (-2A + B)x + (A + B - C) \][/tex]
By equating coefficients of [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant term, we get three equations:
1. For [tex]\(x^2\)[/tex]: [tex]\(A + C = 0\)[/tex]
2. For [tex]\(x\)[/tex]: [tex]\(-2A + B = 3\)[/tex]
3. For constants: [tex]\(A + B - C = 5\)[/tex]
From equation (1):
[tex]\[ C = -A \][/tex]
Substitute [tex]\(C = -A\)[/tex] into equations (2) and (3):
[tex]\[ -2A + B = 3 \quad \text{(2)} \][/tex]
[tex]\[ A + B - (-A) = 5 \quad \text{(3)} \][/tex]
Simplifying equation (3):
[tex]\[ A + B + A = 5 \][/tex]
[tex]\[ 2A + B = 5 \quad \text{(3)} \][/tex]
Now we have:
1. [tex]\(-2A + B = 3\)[/tex]
2. [tex]\(2A + B = 5\)[/tex]
Subtract equation (1) from equation (2):
[tex]\[ [(2A + B) - (-2A + B)] = 5 - 3 \][/tex]
[tex]\[ 4A = 2 \][/tex]
[tex]\[ A = \frac{1}{2} \][/tex]
[tex]\[ C = -A = -\frac{1}{2} \][/tex]
Now substitute [tex]\(A = \frac{1}{2}\)[/tex] into either equation to find [tex]\(B\)[/tex]:
[tex]\[ 2(\frac{1}{2}) + B = 5 \][/tex]
[tex]\[ 1 + B = 5 \][/tex]
[tex]\[ B = 4 \][/tex]
So, we have:
[tex]\[ A = \frac{1}{2}, \quad B = 4, \quad C = -\frac{1}{2} \][/tex]
Thus the partial fraction decomposition is:
[tex]\[ \frac{3x+5}{(x+1)(x-1)^2} = \frac{\frac{1}{2}}{x+1} + \frac{4}{x-1} - \frac{\frac{1}{2}}{(x-1)^2} \][/tex]
### Step 3: Integrating Each Term
Now, we integrate each term separately:
[tex]\[ \int \frac{3x+5}{(x+1)(x-1)^2} \, dx = \int \left( \frac{\frac{1}{2}}{x+1} + \frac{4}{x-1} - \frac{\frac{1}{2}}{(x-1)^2} \right) \, dx \][/tex]
[tex]\[ = \frac{1}{2} \int \frac{1}{x+1} \, dx + 4 \int \frac{1}{x-1} \, dx - \frac{1}{2} \int \frac{1}{(x-1)^2} \, dx \][/tex]
Integrating each term:
[tex]\[ \int \frac{1}{x+1} \, dx = \ln|x+1| + C_1 \][/tex]
[tex]\[ \int \frac{1}{x-1} \, dx = \ln|x-1| + C_2 \][/tex]
[tex]\[ \int \frac{1}{(x-1)^2} \, dx = -\frac{1}{x-1} + C_3 \][/tex]
Combining these, we get:
[tex]\[ \frac{1}{2} \ln|x+1| + 4 \ln|x-1| - \frac{1}{2} \left( -\frac{1}{x-1} \right) + C \][/tex]
Simplifying this, we have:
[tex]\[ \frac{1}{2} \ln|x+1| + 4 \ln|x-1| + \frac{1}{2(x-1)} + C \][/tex]
Using logarithm properties, we can combine the logarithms:
[tex]\[ \boxed{-\frac{1}{2} \ln|x-1| + \frac{1}{2} \ln|x+1| - \frac{4}{x-1} + C} \][/tex]
This is the final answer:
[tex]\[ \boxed{-\frac{1}{2} \ln|x-1| + \frac{1}{2} \ln|x+1| - \frac{4}{x-1} + C} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.