At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

If an account is increasing at a rate of [tex]\(2.1 \%\)[/tex] compounded monthly, what is the exact value of [tex]\(i\)[/tex] in the following future value ordinary annuity formula?

[tex]\[ F V = P \left( \frac{(1+i)^x - 1}{i} \right) \][/tex]

A. [tex]\(2.1\)[/tex]

B. [tex]\(\frac{0.021}{100}\)[/tex]

C. [tex]\(\frac{0.021}{12}\)[/tex]

D. [tex]\(\frac{0.21}{12}\)[/tex]


Sagot :

To find the exact value of [tex]\( i \)[/tex] in the future value ordinary annuity formula:

[tex]\[ FV = P \left( \frac{(1+i)^x - 1}{i} \right) \][/tex]

we need to convert the given annual interest rate into a monthly interest rate, as the interest is compounded monthly.

Given:
- Annual interest rate ([tex]\( r \)[/tex]) = [tex]\( 2.1\% \)[/tex]

Step-by-step explanation:

1. Convert the annual interest rate to a decimal:

[tex]\[ r = \frac{2.1}{100} = 0.021 \][/tex]

2. Determine the monthly interest rate:

Since the interest rate is compounded monthly, we need to divide the annual rate by 12 (the number of months in a year):

[tex]\[ i = \frac{0.021}{12} \][/tex]

So the exact value of [tex]\( i \)[/tex] is:

[tex]\[ i = 0.00175 \][/tex]

Thus, the correct answer is:

c. [tex]\(\frac{0.021}{12}\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.