Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

a. Use limits to find the derivative function [tex]f^{\prime}[/tex] for the function [tex]f[/tex].

b. Evaluate [tex]f^{\prime}(a)[/tex] for the given values of [tex]a[/tex].

[tex]f(x) = \frac{7}{2x + 1}; \, a = -\frac{1}{3}, \, 4[/tex]

a. [tex]f^{\prime}(x) = \square[/tex]

Sagot :

Sure, let's solve each part of the question step-by-step.

### Part a: Finding the Derivative Function [tex]\( f'(x) \)[/tex]

To find the derivative [tex]\( f'(x) \)[/tex] of the function [tex]\( f(x) = \frac{7}{2x+1} \)[/tex], we can use the limit definition of a derivative, but let's use standard differentiation rules for simplicity.

We have [tex]\( f(x) = \frac{7}{2x+1} \)[/tex]. This is a quotient, so we can use the chain rule to differentiate it. Let [tex]\( u = 2x + 1 \)[/tex]. Then:

[tex]\[ f(x) = \frac{7}{u} \][/tex]

To find [tex]\( \frac{d}{dx} \left( \frac{7}{u} \right) \)[/tex], we first find [tex]\( \frac{d}{du} \left( \frac{7}{u} \right) \)[/tex].

[tex]\[ \frac{d}{du} \left( \frac{7}{u} \right) = -\frac{7}{u^2} \][/tex]

Next, we need [tex]\( \frac{du}{dx} \)[/tex]:

[tex]\[ \frac{du}{dx} = 2 \][/tex]

Using the chain rule [tex]\( \frac{d}{dx} = \frac{d}{du} \cdot \frac{du}{dx} \)[/tex]:

[tex]\[ f'(x) = -\frac{7}{u^2} \cdot 2 = -\frac{14}{(2x+1)^2} \][/tex]

So, the derivative function is:

[tex]\[ f'(x) = -\frac{14}{(2x+1)^2} \][/tex]

### Part b: Evaluating [tex]\( f'(a) \)[/tex] for Given Values of [tex]\( a \)[/tex]

Let's now evaluate [tex]\( f'(a) \)[/tex] for [tex]\( a = -\frac{1}{3} \)[/tex] and [tex]\( a = 4 \)[/tex].

1. For [tex]\( a = -\frac{1}{3} \)[/tex]:

[tex]\[ f'\left( -\frac{1}{3} \right) = -\frac{14}{\left( 2 \left( -\frac{1}{3} \right) + 1 \right)^2} \][/tex]

Simplify the denominator:

[tex]\[ 2 \left( -\frac{1}{3} \right) = -\frac{2}{3} \][/tex]

[tex]\[ -\frac{2}{3} + 1 = -\frac{2}{3} + \frac{3}{3} = \frac{1}{3} \][/tex]

So:

[tex]\[ f'\left( -\frac{1}{3} \right) = -\frac{14}{\left( \frac{1}{3} \right)^2} = -\frac{14}{\frac{1}{9}} = -14 \cdot 9 = -126 \][/tex]

Therefore, [tex]\( f' \left( -\frac{1}{3} \right) = -126 \)[/tex].

2. For [tex]\( a = 4 \)[/tex]:

[tex]\[ f'(4) = -\frac{14}{(2 \cdot 4 + 1)^2} \][/tex]

Simplify the expression:

[tex]\[ 2 \cdot 4 + 1 = 8 + 1 = 9 \][/tex]

So:

[tex]\[ f'(4) = -\frac{14}{9^2} = -\frac{14}{81} \][/tex]

Therefore, [tex]\( f'(4) = -\frac{14}{81} \)[/tex].

### Summary

a. The derivative function [tex]\( f'(x) \)[/tex] is:

[tex]\[ f'(x) = -\frac{14}{(2x+1)^2} \][/tex]

b. Evaluating the derivative at the given points:

- [tex]\( f'\left( -\frac{1}{3} \right) = -126 \)[/tex]
- [tex]\( f'(4) = -\frac{14}{81} \)[/tex]