Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the measure of the central angle [tex]\(\angle PQR\)[/tex] in a traffic circle, let's first understand the steps involved in the calculation.
1. Identify the path length: The car travels along a path of 296 feet.
2. Understand the circle geometry:
- The perimeter (circumference) of the circle is given by [tex]\(C = 2\pi r\)[/tex]. Here, for simplicity, we are assuming the radius [tex]\(r = 1\)[/tex], making the circumference [tex]\(C = 2\pi \cdot 1 = 2\pi\)[/tex] feet.
3. Calculate the angle in radians:
- The length of the path (arc length) is 296 feet. To find the corresponding angle in radians, use the ratio of the arc length to the circumference:
[tex]\[ \text{angle in radians} = \frac{\text{arc length}}{\text{circumference}} = \frac{296}{2\pi} \][/tex]
This simplifies to approximately 47.11 radians.
4. Convert the angle from radians to degrees:
- To convert radians to degrees, use the formula: [tex]\(\text{degrees} = \text{radians} \times \frac{180}{\pi}\)[/tex].
- Thus, the angle in degrees is:
[tex]\[ \text{angle in degrees} = 47.11 \times \frac{180}{\pi} \approx 2699.20 \text{ degrees} \][/tex]
5. Round to the nearest whole number:
- Finally, rounding 2699.20 degrees to the nearest whole number gives us 2699 degrees.
Therefore, the measure of [tex]\(\angle PQR\)[/tex] is approximately [tex]\(2699\)[/tex] degrees.
The measure of [tex]\(\angle PQR\)[/tex] is approximately [tex]\(2699\)[/tex].
1. Identify the path length: The car travels along a path of 296 feet.
2. Understand the circle geometry:
- The perimeter (circumference) of the circle is given by [tex]\(C = 2\pi r\)[/tex]. Here, for simplicity, we are assuming the radius [tex]\(r = 1\)[/tex], making the circumference [tex]\(C = 2\pi \cdot 1 = 2\pi\)[/tex] feet.
3. Calculate the angle in radians:
- The length of the path (arc length) is 296 feet. To find the corresponding angle in radians, use the ratio of the arc length to the circumference:
[tex]\[ \text{angle in radians} = \frac{\text{arc length}}{\text{circumference}} = \frac{296}{2\pi} \][/tex]
This simplifies to approximately 47.11 radians.
4. Convert the angle from radians to degrees:
- To convert radians to degrees, use the formula: [tex]\(\text{degrees} = \text{radians} \times \frac{180}{\pi}\)[/tex].
- Thus, the angle in degrees is:
[tex]\[ \text{angle in degrees} = 47.11 \times \frac{180}{\pi} \approx 2699.20 \text{ degrees} \][/tex]
5. Round to the nearest whole number:
- Finally, rounding 2699.20 degrees to the nearest whole number gives us 2699 degrees.
Therefore, the measure of [tex]\(\angle PQR\)[/tex] is approximately [tex]\(2699\)[/tex] degrees.
The measure of [tex]\(\angle PQR\)[/tex] is approximately [tex]\(2699\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.