Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the fraction equivalent to the repeating decimal [tex]\(0.72727272\ldots\)[/tex], let's go through the steps to convert it to a fraction.
1. Let [tex]\( x \)[/tex] be the repeating decimal. So, [tex]\( x = 0.72727272\ldots \)[/tex].
2. To eliminate the repeating part, multiply [tex]\( x \)[/tex] by 100 (since the repeating block is two digits long):
[tex]\[ 100x = 72.72727272\ldots \][/tex]
3. Now, we have two equations:
[tex]\[ x = 0.72727272\ldots \quad \text{(Equation 1)} \][/tex]
[tex]\[ 100x = 72.72727272\ldots \quad \text{(Equation 2)} \][/tex]
4. Subtract Equation 1 from Equation 2 to eliminate the repeating decimals:
[tex]\[ 100x - x = 72.72727272\ldots - 0.72727272\ldots \][/tex]
[tex]\[ 99x = 72 \][/tex]
5. Solve for [tex]\( x \)[/tex] by dividing both sides by 99:
[tex]\[ x = \frac{72}{99} \][/tex]
6. Now, we simplify the fraction [tex]\(\frac{72}{99}\)[/tex]:
- Find the greatest common divisor (GCD) of 72 and 99. The GCD is 9.
- Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{72 \div 9}{99 \div 9} = \frac{8}{11} \][/tex]
Therefore, the equivalent fraction of the non-terminating and repeating decimal [tex]\(0.72727272\ldots\)[/tex] is [tex]\(\frac{8}{11}\)[/tex].
So, the correct answer is [tex]\(\frac{8}{11}\)[/tex].
1. Let [tex]\( x \)[/tex] be the repeating decimal. So, [tex]\( x = 0.72727272\ldots \)[/tex].
2. To eliminate the repeating part, multiply [tex]\( x \)[/tex] by 100 (since the repeating block is two digits long):
[tex]\[ 100x = 72.72727272\ldots \][/tex]
3. Now, we have two equations:
[tex]\[ x = 0.72727272\ldots \quad \text{(Equation 1)} \][/tex]
[tex]\[ 100x = 72.72727272\ldots \quad \text{(Equation 2)} \][/tex]
4. Subtract Equation 1 from Equation 2 to eliminate the repeating decimals:
[tex]\[ 100x - x = 72.72727272\ldots - 0.72727272\ldots \][/tex]
[tex]\[ 99x = 72 \][/tex]
5. Solve for [tex]\( x \)[/tex] by dividing both sides by 99:
[tex]\[ x = \frac{72}{99} \][/tex]
6. Now, we simplify the fraction [tex]\(\frac{72}{99}\)[/tex]:
- Find the greatest common divisor (GCD) of 72 and 99. The GCD is 9.
- Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{72 \div 9}{99 \div 9} = \frac{8}{11} \][/tex]
Therefore, the equivalent fraction of the non-terminating and repeating decimal [tex]\(0.72727272\ldots\)[/tex] is [tex]\(\frac{8}{11}\)[/tex].
So, the correct answer is [tex]\(\frac{8}{11}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.