Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
### Part a: Generating the first six terms of the sequence
The sequence is defined as:
[tex]\[ a_1 = 2 \][/tex]
[tex]\[ a_{n+1} = \frac{1}{2} \left(a_n + 4 \right) \][/tex]
Let's calculate the first six terms.
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ a_1 = 2 \][/tex]
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ a_2 = \frac{1}{2} \left(a_1 + 4 \right) = \frac{1}{2} \left(2 + 4 \right) = \frac{1}{2} \times 6 = 3 \][/tex]
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ a_3 = \frac{1}{2} \left(a_2 + 4 \right) = \frac{1}{2} \left(3 + 4 \right) = \frac{1}{2} \times 7 = 3.5 \][/tex]
4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ a_4 = \frac{1}{2} \left(a_3 + 4 \right) = \frac{1}{2} \left(3.5 + 4 \right) = \frac{1}{2} \times 7.5 = 3.75 \][/tex]
5. For [tex]\( n = 5 \)[/tex]:
[tex]\[ a_5 = \frac{1}{2} \left(a_4 + 4 \right) = \frac{1}{2} \left(3.75 + 4 \right) = \frac{1}{2} \times 7.75 = 3.875 \][/tex]
6. For [tex]\( n = 6 \)[/tex]:
[tex]\[ a_6 = \frac{1}{2} \left(a_5 + 4 \right) = \frac{1}{2} \left(3.875 + 4 \right) = \frac{1}{2} \times 7.875 = 3.9375 \][/tex]
So, the first six terms of the sequence are:
[tex]\[ \{2, 3, 3.5, 3.75, 3.875, 3.9375\} \][/tex]
### Part b: Proving that [tex]\(a_n < 4\)[/tex] for all [tex]\(n\)[/tex]
We will prove this statement by induction.
Base case:
For [tex]\( n = 1 \)[/tex],
[tex]\[ a_1 = 2 \][/tex]
Clearly, [tex]\( 2 < 4 \)[/tex], so the base case holds.
Inductive step:
Assume [tex]\( a_n < 4 \)[/tex] for some [tex]\( n \)[/tex]. We need to show that [tex]\( a_{n+1} < 4 \)[/tex].
From the recursive definition, we have:
[tex]\[ a_{n+1} = \frac{1}{2} \left(a_n + 4 \right) \][/tex]
Since [tex]\( a_n < 4 \)[/tex], let [tex]\( a_n = 4 - \epsilon \)[/tex], where [tex]\( \epsilon > 0 \)[/tex]. Then,
[tex]\[ a_{n+1} = \frac{1}{2} \left((4 - \epsilon) + 4 \right) = \frac{1}{2} \left(8 - \epsilon \right) = 4 - \frac{\epsilon}{2} \][/tex]
Since [tex]\( \epsilon > 0 \)[/tex], it follows that [tex]\( 4 - \frac{\epsilon}{2} < 4 \)[/tex]. Hence,
[tex]\[ a_{n+1} < 4 \][/tex]
By induction, we have proven that [tex]\( a_n < 4 \)[/tex] for all [tex]\( n \)[/tex].
### Part c: Proving that [tex]\(\{ a_n \}\)[/tex] is a monotonically increasing sequence
We want to show that [tex]\( a_{n+1} \ge a_n \)[/tex] for all [tex]\( n \)[/tex].
Using the recursive definition:
[tex]\[ a_{n+1} = \frac{1}{2} \left(a_n + 4 \right) \][/tex]
Let's examine the difference [tex]\( a_{n+1} - a_n \)[/tex]:
[tex]\[ a_{n+1} - a_n = \frac{1}{2} \left(a_n + 4 \right) - a_n \][/tex]
[tex]\[ = \frac{1}{2} a_n + 2 - a_n \][/tex]
[tex]\[ = 2 - \frac{1}{2} a_n \][/tex]
Since [tex]\( a_n < 4 \)[/tex], let [tex]\( a_n = 4 - \epsilon \)[/tex] where [tex]\( \epsilon > 0 \)[/tex]. Then,
[tex]\[ 2 - \frac{1}{2} a_n = 2 - \frac{1}{2} (4 - \epsilon) = 2 - 2 + \frac{\epsilon}{2} = \frac{\epsilon}{2} \][/tex]
Since [tex]\( \epsilon > 0 \)[/tex], it follows that [tex]\( \frac{\epsilon}{2} > 0 \)[/tex]. Therefore,
[tex]\[ a_{n+1} - a_n = \frac{\epsilon}{2} > 0 \][/tex]
Thus, we have [tex]\( a_{n+1} > a_n \)[/tex], proving that the sequence [tex]\(\{ a_n \}\)[/tex] is monotonically increasing.
### Conclusion
a) The first six terms of the sequence are [tex]\(\{ 2, 3, 3.5, 3.75, 3.875, 3.9375 \}\)[/tex].
b) We proved that [tex]\( a_n < 4 \)[/tex] for all [tex]\( n \)[/tex].
c) We also proved that the sequence [tex]\(\{ a_n \}\)[/tex] is monotonically increasing.
### Part a: Generating the first six terms of the sequence
The sequence is defined as:
[tex]\[ a_1 = 2 \][/tex]
[tex]\[ a_{n+1} = \frac{1}{2} \left(a_n + 4 \right) \][/tex]
Let's calculate the first six terms.
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ a_1 = 2 \][/tex]
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ a_2 = \frac{1}{2} \left(a_1 + 4 \right) = \frac{1}{2} \left(2 + 4 \right) = \frac{1}{2} \times 6 = 3 \][/tex]
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ a_3 = \frac{1}{2} \left(a_2 + 4 \right) = \frac{1}{2} \left(3 + 4 \right) = \frac{1}{2} \times 7 = 3.5 \][/tex]
4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ a_4 = \frac{1}{2} \left(a_3 + 4 \right) = \frac{1}{2} \left(3.5 + 4 \right) = \frac{1}{2} \times 7.5 = 3.75 \][/tex]
5. For [tex]\( n = 5 \)[/tex]:
[tex]\[ a_5 = \frac{1}{2} \left(a_4 + 4 \right) = \frac{1}{2} \left(3.75 + 4 \right) = \frac{1}{2} \times 7.75 = 3.875 \][/tex]
6. For [tex]\( n = 6 \)[/tex]:
[tex]\[ a_6 = \frac{1}{2} \left(a_5 + 4 \right) = \frac{1}{2} \left(3.875 + 4 \right) = \frac{1}{2} \times 7.875 = 3.9375 \][/tex]
So, the first six terms of the sequence are:
[tex]\[ \{2, 3, 3.5, 3.75, 3.875, 3.9375\} \][/tex]
### Part b: Proving that [tex]\(a_n < 4\)[/tex] for all [tex]\(n\)[/tex]
We will prove this statement by induction.
Base case:
For [tex]\( n = 1 \)[/tex],
[tex]\[ a_1 = 2 \][/tex]
Clearly, [tex]\( 2 < 4 \)[/tex], so the base case holds.
Inductive step:
Assume [tex]\( a_n < 4 \)[/tex] for some [tex]\( n \)[/tex]. We need to show that [tex]\( a_{n+1} < 4 \)[/tex].
From the recursive definition, we have:
[tex]\[ a_{n+1} = \frac{1}{2} \left(a_n + 4 \right) \][/tex]
Since [tex]\( a_n < 4 \)[/tex], let [tex]\( a_n = 4 - \epsilon \)[/tex], where [tex]\( \epsilon > 0 \)[/tex]. Then,
[tex]\[ a_{n+1} = \frac{1}{2} \left((4 - \epsilon) + 4 \right) = \frac{1}{2} \left(8 - \epsilon \right) = 4 - \frac{\epsilon}{2} \][/tex]
Since [tex]\( \epsilon > 0 \)[/tex], it follows that [tex]\( 4 - \frac{\epsilon}{2} < 4 \)[/tex]. Hence,
[tex]\[ a_{n+1} < 4 \][/tex]
By induction, we have proven that [tex]\( a_n < 4 \)[/tex] for all [tex]\( n \)[/tex].
### Part c: Proving that [tex]\(\{ a_n \}\)[/tex] is a monotonically increasing sequence
We want to show that [tex]\( a_{n+1} \ge a_n \)[/tex] for all [tex]\( n \)[/tex].
Using the recursive definition:
[tex]\[ a_{n+1} = \frac{1}{2} \left(a_n + 4 \right) \][/tex]
Let's examine the difference [tex]\( a_{n+1} - a_n \)[/tex]:
[tex]\[ a_{n+1} - a_n = \frac{1}{2} \left(a_n + 4 \right) - a_n \][/tex]
[tex]\[ = \frac{1}{2} a_n + 2 - a_n \][/tex]
[tex]\[ = 2 - \frac{1}{2} a_n \][/tex]
Since [tex]\( a_n < 4 \)[/tex], let [tex]\( a_n = 4 - \epsilon \)[/tex] where [tex]\( \epsilon > 0 \)[/tex]. Then,
[tex]\[ 2 - \frac{1}{2} a_n = 2 - \frac{1}{2} (4 - \epsilon) = 2 - 2 + \frac{\epsilon}{2} = \frac{\epsilon}{2} \][/tex]
Since [tex]\( \epsilon > 0 \)[/tex], it follows that [tex]\( \frac{\epsilon}{2} > 0 \)[/tex]. Therefore,
[tex]\[ a_{n+1} - a_n = \frac{\epsilon}{2} > 0 \][/tex]
Thus, we have [tex]\( a_{n+1} > a_n \)[/tex], proving that the sequence [tex]\(\{ a_n \}\)[/tex] is monotonically increasing.
### Conclusion
a) The first six terms of the sequence are [tex]\(\{ 2, 3, 3.5, 3.75, 3.875, 3.9375 \}\)[/tex].
b) We proved that [tex]\( a_n < 4 \)[/tex] for all [tex]\( n \)[/tex].
c) We also proved that the sequence [tex]\(\{ a_n \}\)[/tex] is monotonically increasing.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.