Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine how much silicon-32 will be present after 300 years, given an initial amount of 30 grams with a half-life of 710 years, we use the exponential decay formula:
[tex]\[ A = A_0 e^{kt} \][/tex]
Here:
- [tex]\( A \)[/tex] is the amount remaining after time [tex]\( t \)[/tex].
- [tex]\( A_0 \)[/tex] is the initial amount, which is 30 grams.
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time elapsed, which is 300 years.
- [tex]\( e \)[/tex] is the base of the natural logarithm.
### Step 1: Calculate the decay constant [tex]\( k \)[/tex]
The decay constant [tex]\( k \)[/tex] is related to the half-life [tex]\( T_{1/2} \)[/tex] by the formula:
[tex]\[ k = \frac{\ln(0.5)}{T_{1/2}} \][/tex]
Using the given half-life of 710 years:
[tex]\[ k = \frac{\ln(0.5)}{710} \][/tex]
### Step 2: Substitute [tex]\( k \)[/tex] and [tex]\( t \)[/tex]
Let’s substitute [tex]\( k \)[/tex] and [tex]\( t = 300 \)[/tex] years into our decay formula:
[tex]\[ A = 30 \times e^{k \times 300} \][/tex]
### Step 3: Calculate the exponent
[tex]\[ k \times 300 \][/tex]
Using the calculated [tex]\( k \approx -0.0009762636345914723 \)[/tex]:
### Step 4: Calculate the amount remaining
Plugging the values into the decay formula, we get:
[tex]\[ A \approx 30 \times e^{-0.0009762636345914723 \times 300} \][/tex]
[tex]\[ A \approx 30 \times e^{-0.2928789903774417} \][/tex]
[tex]\[ A \approx 30 \times 0.7461123474059929 \][/tex]
[tex]\[ A \approx 22.383370422179787 \][/tex]
### Step 5: Round the answer
After rounding to three decimal places:
[tex]\[ A \approx 22.383 \][/tex]
So, after 300 years, approximately 22.383 grams of silicon-32 will be present. The correct answer is:
[tex]\[ \boxed{22.383} \][/tex]
[tex]\[ A = A_0 e^{kt} \][/tex]
Here:
- [tex]\( A \)[/tex] is the amount remaining after time [tex]\( t \)[/tex].
- [tex]\( A_0 \)[/tex] is the initial amount, which is 30 grams.
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time elapsed, which is 300 years.
- [tex]\( e \)[/tex] is the base of the natural logarithm.
### Step 1: Calculate the decay constant [tex]\( k \)[/tex]
The decay constant [tex]\( k \)[/tex] is related to the half-life [tex]\( T_{1/2} \)[/tex] by the formula:
[tex]\[ k = \frac{\ln(0.5)}{T_{1/2}} \][/tex]
Using the given half-life of 710 years:
[tex]\[ k = \frac{\ln(0.5)}{710} \][/tex]
### Step 2: Substitute [tex]\( k \)[/tex] and [tex]\( t \)[/tex]
Let’s substitute [tex]\( k \)[/tex] and [tex]\( t = 300 \)[/tex] years into our decay formula:
[tex]\[ A = 30 \times e^{k \times 300} \][/tex]
### Step 3: Calculate the exponent
[tex]\[ k \times 300 \][/tex]
Using the calculated [tex]\( k \approx -0.0009762636345914723 \)[/tex]:
### Step 4: Calculate the amount remaining
Plugging the values into the decay formula, we get:
[tex]\[ A \approx 30 \times e^{-0.0009762636345914723 \times 300} \][/tex]
[tex]\[ A \approx 30 \times e^{-0.2928789903774417} \][/tex]
[tex]\[ A \approx 30 \times 0.7461123474059929 \][/tex]
[tex]\[ A \approx 22.383370422179787 \][/tex]
### Step 5: Round the answer
After rounding to three decimal places:
[tex]\[ A \approx 22.383 \][/tex]
So, after 300 years, approximately 22.383 grams of silicon-32 will be present. The correct answer is:
[tex]\[ \boxed{22.383} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.