Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's plot five points on the parabola given by the equation [tex]\( y = (x+3)^2 + 1 \)[/tex]. We'll choose five values for [tex]\( x \)[/tex], calculate the corresponding [tex]\( y \)[/tex] values, and then plot those points.
1. Choosing the first value for [tex]\( x \)[/tex]:
- Let [tex]\( x = -5 \)[/tex]
- Substitute [tex]\( x = -5 \)[/tex] into the equation:
[tex]\[ y = (-5 + 3)^2 + 1 = (-2)^2 + 1 = 4 + 1 = 5 \][/tex]
- The first point is [tex]\( (-5, 5) \)[/tex].
2. Choosing the second value for [tex]\( x \)[/tex]:
- Let [tex]\( x = -3 \)[/tex]
- Substitute [tex]\( x = -3 \)[/tex] into the equation:
[tex]\[ y = (-3 + 3)^2 + 1 = 0^2 + 1 = 0 + 1 = 1 \][/tex]
- The second point is [tex]\( (-3, 1) \)[/tex].
3. Choosing the third value for [tex]\( x \)[/tex]:
- Let [tex]\( x = -1 \)[/tex]
- Substitute [tex]\( x = -1 \)[/tex] into the equation:
[tex]\[ y = (-1 + 3)^2 + 1 = 2^2 + 1 = 4 + 1 = 5 \][/tex]
- The third point is [tex]\( (-1, 5) \)[/tex].
4. Choosing the fourth value for [tex]\( x \)[/tex]:
- Let [tex]\( x = 0 \)[/tex]
- Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = (0 + 3)^2 + 1 = 3^2 + 1 = 9 + 1 = 10 \][/tex]
- The fourth point is [tex]\( (0, 10) \)[/tex].
5. Choosing the fifth value for [tex]\( x \)[/tex]:
- Let [tex]\( x = 2 \)[/tex]
- Substitute [tex]\( x = 2 \)[/tex] into the equation:
[tex]\[ y = (2 + 3)^2 + 1 = 5^2 + 1 = 25 + 1 = 26 \][/tex]
- The fifth point is [tex]\( (2, 26) \)[/tex].
So, the five points on the parabola [tex]\( y = (x+3)^2 + 1 \)[/tex] are:
[tex]\[ (-5, 5), (-3, 1), (-1, 5), (0, 10), (2, 26) \][/tex]
These points can be plotted on a graph to visualize the parabola.
1. Choosing the first value for [tex]\( x \)[/tex]:
- Let [tex]\( x = -5 \)[/tex]
- Substitute [tex]\( x = -5 \)[/tex] into the equation:
[tex]\[ y = (-5 + 3)^2 + 1 = (-2)^2 + 1 = 4 + 1 = 5 \][/tex]
- The first point is [tex]\( (-5, 5) \)[/tex].
2. Choosing the second value for [tex]\( x \)[/tex]:
- Let [tex]\( x = -3 \)[/tex]
- Substitute [tex]\( x = -3 \)[/tex] into the equation:
[tex]\[ y = (-3 + 3)^2 + 1 = 0^2 + 1 = 0 + 1 = 1 \][/tex]
- The second point is [tex]\( (-3, 1) \)[/tex].
3. Choosing the third value for [tex]\( x \)[/tex]:
- Let [tex]\( x = -1 \)[/tex]
- Substitute [tex]\( x = -1 \)[/tex] into the equation:
[tex]\[ y = (-1 + 3)^2 + 1 = 2^2 + 1 = 4 + 1 = 5 \][/tex]
- The third point is [tex]\( (-1, 5) \)[/tex].
4. Choosing the fourth value for [tex]\( x \)[/tex]:
- Let [tex]\( x = 0 \)[/tex]
- Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = (0 + 3)^2 + 1 = 3^2 + 1 = 9 + 1 = 10 \][/tex]
- The fourth point is [tex]\( (0, 10) \)[/tex].
5. Choosing the fifth value for [tex]\( x \)[/tex]:
- Let [tex]\( x = 2 \)[/tex]
- Substitute [tex]\( x = 2 \)[/tex] into the equation:
[tex]\[ y = (2 + 3)^2 + 1 = 5^2 + 1 = 25 + 1 = 26 \][/tex]
- The fifth point is [tex]\( (2, 26) \)[/tex].
So, the five points on the parabola [tex]\( y = (x+3)^2 + 1 \)[/tex] are:
[tex]\[ (-5, 5), (-3, 1), (-1, 5), (0, 10), (2, 26) \][/tex]
These points can be plotted on a graph to visualize the parabola.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.