Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To simplify the expression [tex]\(\sqrt[3]{\frac{x^3 (y^4)^3}{6^3}}\)[/tex], follow these steps:
Step 1: Simplify the expression inside the cube root.
[tex]\[ (y^4)^3 \text{ can be written as } y^{4 \cdot 3} = y^{12} \][/tex]
So, the expression inside the cube root becomes:
[tex]\[ \frac{x^3 y^{12}}{6^3} \][/tex]
Step 2: We now need to find the cube root of the entire expression:
[tex]\[ \sqrt[3]{\frac{x^3 y^{12}}{6^3}} \][/tex]
Step 3: Recall the property of cube roots where [tex]\(\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}\)[/tex]. Applying this property:
[tex]\[ \sqrt[3]{\frac{x^3 y^{12}}{6^3}} = \frac{\sqrt[3]{x^3 y^{12}}}{\sqrt[3]{6^3}} \][/tex]
Step 4: Simplify the cube root of the numerator and the denominator separately. Starting with the numerator:
[tex]\[ \sqrt[3]{x^3 y^{12}} \][/tex]
Using properties of exponents and cube roots, we know [tex]\(\sqrt[3]{a^3} = a\)[/tex]. Therefore:
[tex]\[ \sqrt[3]{x^3 y^{12}} = x y^{12/3} = x y^4 \][/tex]
Step 5: Simplify the cube root of the denominator:
[tex]\[ \sqrt[3]{6^3} = 6 \][/tex]
Step 6: Combine these results:
[tex]\[ \frac{xy^4}{6} \][/tex]
Putting it all together, the simplified expression is:
[tex]\[ \frac{(xy^4)}{6} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt[3]{\frac{x^3 (y^4)^3}{6^3}}\)[/tex] is:
[tex]\[ \frac{(x^3 y^{12})^{1/3}}{6} \][/tex]
or equivalently:
[tex]\[ \frac{(x y^4)}{6} \][/tex]
Step 1: Simplify the expression inside the cube root.
[tex]\[ (y^4)^3 \text{ can be written as } y^{4 \cdot 3} = y^{12} \][/tex]
So, the expression inside the cube root becomes:
[tex]\[ \frac{x^3 y^{12}}{6^3} \][/tex]
Step 2: We now need to find the cube root of the entire expression:
[tex]\[ \sqrt[3]{\frac{x^3 y^{12}}{6^3}} \][/tex]
Step 3: Recall the property of cube roots where [tex]\(\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}\)[/tex]. Applying this property:
[tex]\[ \sqrt[3]{\frac{x^3 y^{12}}{6^3}} = \frac{\sqrt[3]{x^3 y^{12}}}{\sqrt[3]{6^3}} \][/tex]
Step 4: Simplify the cube root of the numerator and the denominator separately. Starting with the numerator:
[tex]\[ \sqrt[3]{x^3 y^{12}} \][/tex]
Using properties of exponents and cube roots, we know [tex]\(\sqrt[3]{a^3} = a\)[/tex]. Therefore:
[tex]\[ \sqrt[3]{x^3 y^{12}} = x y^{12/3} = x y^4 \][/tex]
Step 5: Simplify the cube root of the denominator:
[tex]\[ \sqrt[3]{6^3} = 6 \][/tex]
Step 6: Combine these results:
[tex]\[ \frac{xy^4}{6} \][/tex]
Putting it all together, the simplified expression is:
[tex]\[ \frac{(xy^4)}{6} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt[3]{\frac{x^3 (y^4)^3}{6^3}}\)[/tex] is:
[tex]\[ \frac{(x^3 y^{12})^{1/3}}{6} \][/tex]
or equivalently:
[tex]\[ \frac{(x y^4)}{6} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.