Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Rewrite the expression in a simplified form:
[tex]\[ \sqrt[3]{\frac{x^3(y^4)^3}{6^3}} \][/tex]

Sagot :

To simplify the expression [tex]\(\sqrt[3]{\frac{x^3 (y^4)^3}{6^3}}\)[/tex], follow these steps:

Step 1: Simplify the expression inside the cube root.
[tex]\[ (y^4)^3 \text{ can be written as } y^{4 \cdot 3} = y^{12} \][/tex]
So, the expression inside the cube root becomes:
[tex]\[ \frac{x^3 y^{12}}{6^3} \][/tex]

Step 2: We now need to find the cube root of the entire expression:
[tex]\[ \sqrt[3]{\frac{x^3 y^{12}}{6^3}} \][/tex]

Step 3: Recall the property of cube roots where [tex]\(\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}\)[/tex]. Applying this property:
[tex]\[ \sqrt[3]{\frac{x^3 y^{12}}{6^3}} = \frac{\sqrt[3]{x^3 y^{12}}}{\sqrt[3]{6^3}} \][/tex]

Step 4: Simplify the cube root of the numerator and the denominator separately. Starting with the numerator:
[tex]\[ \sqrt[3]{x^3 y^{12}} \][/tex]
Using properties of exponents and cube roots, we know [tex]\(\sqrt[3]{a^3} = a\)[/tex]. Therefore:
[tex]\[ \sqrt[3]{x^3 y^{12}} = x y^{12/3} = x y^4 \][/tex]

Step 5: Simplify the cube root of the denominator:
[tex]\[ \sqrt[3]{6^3} = 6 \][/tex]

Step 6: Combine these results:
[tex]\[ \frac{xy^4}{6} \][/tex]

Putting it all together, the simplified expression is:
[tex]\[ \frac{(xy^4)}{6} \][/tex]

Therefore, the simplified form of [tex]\(\sqrt[3]{\frac{x^3 (y^4)^3}{6^3}}\)[/tex] is:
[tex]\[ \frac{(x^3 y^{12})^{1/3}}{6} \][/tex]
or equivalently:
[tex]\[ \frac{(x y^4)}{6} \][/tex]