At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's break down and simplify the expression [tex]\(2 \sqrt[3]{27 x^3 y^6}\)[/tex] step-by-step.
### Step 1: Simplification Inside the Cube Root
First, we need to simplify the expression inside the cube root, [tex]\( \sqrt[3]{27 x^3 y^6} \)[/tex].
1. Cube Root of 27:
- We know that [tex]\( 27 = 3^3 \)[/tex]. Therefore, [tex]\( \sqrt[3]{27} = 3 \)[/tex] since [tex]\( 3^3 = 27 \)[/tex].
2. Cube Root of [tex]\( x^3 \)[/tex]:
- The cube root of [tex]\( x^3 \)[/tex] is [tex]\( x \)[/tex] because [tex]\( (x^3)^{1/3} = x \)[/tex].
3. Cube Root of [tex]\( y^6 \)[/tex]:
- The cube root of [tex]\( y^6 \)[/tex] can be simplified as follows: [tex]\( (y^6)^{1/3} = y^{6/3} = y^2 \)[/tex].
Combining these results, we have:
[tex]\[ \sqrt[3]{27 x^3 y^6} = 3 \cdot x \cdot y^2 \][/tex]
### Step 2: Multiply by 2
Next, we need to multiply the simplified result inside the cube root by 2:
[tex]\[ 2 \cdot \sqrt[3]{27 x^3 y^6} = 2 \cdot (3 \cdot x \cdot y^2) \][/tex]
Perform the multiplication:
[tex]\[ 2 \cdot 3 \cdot x \cdot y^2 = 6 x y^2 \][/tex]
### Final Answer
Thus, the simplified form of the expression [tex]\( 2 \sqrt[3]{27 x^3 y^6} \)[/tex] is:
[tex]\[ 6 x y^2 \][/tex]
So, the answer is:
[tex]\[ 6 x y^2 \][/tex]
### Step 1: Simplification Inside the Cube Root
First, we need to simplify the expression inside the cube root, [tex]\( \sqrt[3]{27 x^3 y^6} \)[/tex].
1. Cube Root of 27:
- We know that [tex]\( 27 = 3^3 \)[/tex]. Therefore, [tex]\( \sqrt[3]{27} = 3 \)[/tex] since [tex]\( 3^3 = 27 \)[/tex].
2. Cube Root of [tex]\( x^3 \)[/tex]:
- The cube root of [tex]\( x^3 \)[/tex] is [tex]\( x \)[/tex] because [tex]\( (x^3)^{1/3} = x \)[/tex].
3. Cube Root of [tex]\( y^6 \)[/tex]:
- The cube root of [tex]\( y^6 \)[/tex] can be simplified as follows: [tex]\( (y^6)^{1/3} = y^{6/3} = y^2 \)[/tex].
Combining these results, we have:
[tex]\[ \sqrt[3]{27 x^3 y^6} = 3 \cdot x \cdot y^2 \][/tex]
### Step 2: Multiply by 2
Next, we need to multiply the simplified result inside the cube root by 2:
[tex]\[ 2 \cdot \sqrt[3]{27 x^3 y^6} = 2 \cdot (3 \cdot x \cdot y^2) \][/tex]
Perform the multiplication:
[tex]\[ 2 \cdot 3 \cdot x \cdot y^2 = 6 x y^2 \][/tex]
### Final Answer
Thus, the simplified form of the expression [tex]\( 2 \sqrt[3]{27 x^3 y^6} \)[/tex] is:
[tex]\[ 6 x y^2 \][/tex]
So, the answer is:
[tex]\[ 6 x y^2 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.