Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Simplify the expression:
[tex]\[ \sqrt[4]{256 x^4 y^8} \][/tex]


Sagot :

To solve the expression [tex]\(\sqrt[4]{256 x^4 y^8}\)[/tex], we'll evaluate each component step-by-step. The fourth root of a product is equal to the product of the fourth roots of each factor.

Step 1: Evaluate the fourth root of the constant 256.
[tex]\[ \sqrt[4]{256} \][/tex]

256 is a power of 2:
[tex]\[ 256 = 2^8 \][/tex]

So:
[tex]\[ \sqrt[4]{256} = \sqrt[4]{2^8} \][/tex]

To find the fourth root, we divide the exponent by 4:
[tex]\[ \sqrt[4]{2^8} = 2^{8/4} = 2^2 = 4 \][/tex]

Step 2: Evaluate the fourth root of [tex]\(x^4\)[/tex].
[tex]\[ \sqrt[4]{x^4} \][/tex]

Similarly, we divide the exponent by 4:
[tex]\[ \sqrt[4]{x^4} = (x^4)^{1/4} = x^{4/4} = x^1 = x \][/tex]

Step 3: Evaluate the fourth root of [tex]\(y^8\)[/tex].
[tex]\[ \sqrt[4]{y^8} \][/tex]

Again, we divide the exponent by 4:
[tex]\[ \sqrt[4]{y^8} = (y^8)^{1/4} = y^{8/4} = y^2 \][/tex]

Step 4: Combine the results from Step 1, Step 2, and Step 3:
[tex]\[ \sqrt[4]{256 x^4 y^8} = \sqrt[4]{256} \cdot \sqrt[4]{x^4} \cdot \sqrt[4]{y^8} = 4 \cdot x \cdot y^2 \][/tex]

Thus, the simplified expression is:
[tex]\[ \sqrt[4]{256 x^4 y^8} = 4xy^2 \][/tex]