Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for the reaction:
[tex]\[ 2 HF (g) \longleftrightarrow H_2 (g) + F_2 (g), \][/tex]
we use the given equilibrium concentrations. The formula for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction can be written as:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2}. \][/tex]
Given the equilibrium concentrations:
[tex]\[ [HF] = 5.82 \times 10^{-2} \text{ M}, \][/tex]
[tex]\[ [H_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
[tex]\[ [F_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
we substitute these values into the formula for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2}. \][/tex]
Now, let's calculate it step-by-step:
1. Calculate the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 70.56 \times 10^{-6} = 7.056 \times 10^{-5}. \][/tex]
2. Calculate the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3}. \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \approx 2.083 \times 10^{-2}. \][/tex]
Upon rounding to two significant figures, we get:
[tex]\[ K_{\text{eq}} \approx 2.1 \times 10^{-2}. \][/tex]
Thus, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction is [tex]\( 2.1 \times 10^{-2} \)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{2.1 \times 10^{-2}} \][/tex]
[tex]\[ 2 HF (g) \longleftrightarrow H_2 (g) + F_2 (g), \][/tex]
we use the given equilibrium concentrations. The formula for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction can be written as:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2}. \][/tex]
Given the equilibrium concentrations:
[tex]\[ [HF] = 5.82 \times 10^{-2} \text{ M}, \][/tex]
[tex]\[ [H_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
[tex]\[ [F_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
we substitute these values into the formula for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2}. \][/tex]
Now, let's calculate it step-by-step:
1. Calculate the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 70.56 \times 10^{-6} = 7.056 \times 10^{-5}. \][/tex]
2. Calculate the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3}. \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \approx 2.083 \times 10^{-2}. \][/tex]
Upon rounding to two significant figures, we get:
[tex]\[ K_{\text{eq}} \approx 2.1 \times 10^{-2}. \][/tex]
Thus, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction is [tex]\( 2.1 \times 10^{-2} \)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{2.1 \times 10^{-2}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.