Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for the reaction:
[tex]\[ 2 HF (g) \longleftrightarrow H_2 (g) + F_2 (g), \][/tex]
we use the given equilibrium concentrations. The formula for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction can be written as:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2}. \][/tex]
Given the equilibrium concentrations:
[tex]\[ [HF] = 5.82 \times 10^{-2} \text{ M}, \][/tex]
[tex]\[ [H_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
[tex]\[ [F_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
we substitute these values into the formula for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2}. \][/tex]
Now, let's calculate it step-by-step:
1. Calculate the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 70.56 \times 10^{-6} = 7.056 \times 10^{-5}. \][/tex]
2. Calculate the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3}. \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \approx 2.083 \times 10^{-2}. \][/tex]
Upon rounding to two significant figures, we get:
[tex]\[ K_{\text{eq}} \approx 2.1 \times 10^{-2}. \][/tex]
Thus, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction is [tex]\( 2.1 \times 10^{-2} \)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{2.1 \times 10^{-2}} \][/tex]
[tex]\[ 2 HF (g) \longleftrightarrow H_2 (g) + F_2 (g), \][/tex]
we use the given equilibrium concentrations. The formula for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction can be written as:
[tex]\[ K_{\text{eq}} = \frac{[H_2][F_2]}{[HF]^2}. \][/tex]
Given the equilibrium concentrations:
[tex]\[ [HF] = 5.82 \times 10^{-2} \text{ M}, \][/tex]
[tex]\[ [H_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
[tex]\[ [F_2] = 8.4 \times 10^{-3} \text{ M}, \][/tex]
we substitute these values into the formula for [tex]\( K_{\text{eq}} \)[/tex]:
[tex]\[ K_{\text{eq}} = \frac{(8.4 \times 10^{-3})(8.4 \times 10^{-3})}{(5.82 \times 10^{-2})^2}. \][/tex]
Now, let's calculate it step-by-step:
1. Calculate the numerator:
[tex]\[ (8.4 \times 10^{-3}) \times (8.4 \times 10^{-3}) = 70.56 \times 10^{-6} = 7.056 \times 10^{-5}. \][/tex]
2. Calculate the denominator:
[tex]\[ (5.82 \times 10^{-2})^2 = 33.8724 \times 10^{-4} = 3.38724 \times 10^{-3}. \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ K_{\text{eq}} = \frac{7.056 \times 10^{-5}}{3.38724 \times 10^{-3}} \approx 2.083 \times 10^{-2}. \][/tex]
Upon rounding to two significant figures, we get:
[tex]\[ K_{\text{eq}} \approx 2.1 \times 10^{-2}. \][/tex]
Thus, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction is [tex]\( 2.1 \times 10^{-2} \)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{2.1 \times 10^{-2}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.