At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the problem step-by-step to find the equilibrium constant for the given chemical reaction.
Given the reaction:
[tex]\[ \text{PCl}_5(g) \longleftrightarrow \text{PCl}_3(g) + \text{Cl}_2(g) \][/tex]
The equilibrium concentrations at 500 K are:
[tex]\[ \left[ \text{PCl}_5 \right] = 0.0095 \, M \][/tex]
[tex]\[ \left[ \text{PCl}_3 \right] = 0.020 \, M \][/tex]
[tex]\[ \left[ \text{Cl}_2 \right] = 0.020 \, M \][/tex]
The equilibrium constant [tex]\( K_{eq} \)[/tex] is given by the expression:
[tex]\[ K_{eq} = \frac{\left[ \text{PCl}_3 \right] \left[ \text{Cl}_2 \right]}{\left[ \text{PCl}_5 \right]} \][/tex]
Now we substitute the values into this expression:
[tex]\[ K_{eq} = \frac{(0.020) \times (0.020)}{0.0095} \][/tex]
Simplifying the expression:
[tex]\[ K_{eq} = \frac{0.020 \times 0.020}{0.0095} \][/tex]
[tex]\[ K_{eq} = \frac{0.0004}{0.0095} \][/tex]
[tex]\[ K_{eq} \approx 0.042 \][/tex]
Therefore, the equilibrium constant [tex]\( K_{eq} \)[/tex] for the given reaction at 500 K is approximately [tex]\( 0.042 \)[/tex].
The correct answer is:
[tex]\[ 0.042 \][/tex]
Given the reaction:
[tex]\[ \text{PCl}_5(g) \longleftrightarrow \text{PCl}_3(g) + \text{Cl}_2(g) \][/tex]
The equilibrium concentrations at 500 K are:
[tex]\[ \left[ \text{PCl}_5 \right] = 0.0095 \, M \][/tex]
[tex]\[ \left[ \text{PCl}_3 \right] = 0.020 \, M \][/tex]
[tex]\[ \left[ \text{Cl}_2 \right] = 0.020 \, M \][/tex]
The equilibrium constant [tex]\( K_{eq} \)[/tex] is given by the expression:
[tex]\[ K_{eq} = \frac{\left[ \text{PCl}_3 \right] \left[ \text{Cl}_2 \right]}{\left[ \text{PCl}_5 \right]} \][/tex]
Now we substitute the values into this expression:
[tex]\[ K_{eq} = \frac{(0.020) \times (0.020)}{0.0095} \][/tex]
Simplifying the expression:
[tex]\[ K_{eq} = \frac{0.020 \times 0.020}{0.0095} \][/tex]
[tex]\[ K_{eq} = \frac{0.0004}{0.0095} \][/tex]
[tex]\[ K_{eq} \approx 0.042 \][/tex]
Therefore, the equilibrium constant [tex]\( K_{eq} \)[/tex] for the given reaction at 500 K is approximately [tex]\( 0.042 \)[/tex].
The correct answer is:
[tex]\[ 0.042 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.