Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Consider the reaction:

[tex]\[ 2 \text{NOCl}(g) \leftrightarrow 2 \text{NO}(g) + \text{Cl}_2(g) \][/tex]

At equilibrium, the concentrations are as follows:

[tex]\[
\begin{array}{l}
[ \text{NOCl} ] = 1.4 \times 10^{-2} \, \text{M} \\
[ \text{NO} ] = 1.2 \times 10^{-3} \, \text{M} \\
[ \text{Cl}_2 ] = 2.2 \times 10^{-3} \, \text{M}
\end{array}
\][/tex]

What is the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction expressed in scientific notation?

A. [tex]\( 1.6 \times 10^{-5} \)[/tex]

B. [tex]\( 6.2 \times 10^{-4} \)[/tex]

C. [tex]\( 6.2 \times 10^{4} \)[/tex]

D. [tex]\( 1.6 \times 10^{5} \)[/tex]


Sagot :

To find the equilibrium constant ([tex]\( K_{\text{eq}} \)[/tex]) for the reaction:

[tex]\[ 2 \text{NOCl} (g) \leftrightarrow 2 \text{NO} (g) + \text{Cl}_2 (g) \][/tex]

we use the given equilibrium concentrations:

[tex]\[ \begin{array}{l} [ \text{NOCl} ] = 1.4 \times 10^{-2} \, \text{M} \\ [ \text{NO} ] = 1.2 \times 10^{-3} \, \text{M} \\ [ \text{Cl}_2 ] = 2.2 \times 10^{-3} \, \text{M} \end{array} \][/tex]

The expression for the equilibrium constant [tex]\( K_{\text{eq}} \)[/tex] for this reaction is:

[tex]\[ K_{\text{eq}} = \frac{[\text{NO}]^2 [\text{Cl}_2]}{[\text{NOCl}]^2} \][/tex]

Let's plug in the given equilibrium concentrations into this expression:

[tex]\[ K_{\text{eq}} = \frac{(1.2 \times 10^{-3})^2 (2.2 \times 10^{-3})}{(1.4 \times 10^{-2})^2} \][/tex]

Now, let's calculate step-by-step:

1. Calculate [tex]\( (1.2 \times 10^{-3})^2 \)[/tex]:

[tex]\[ (1.2 \times 10^{-3})^2 = 1.44 \times 10^{-6} \][/tex]

2. Multiply this result by [tex]\( 2.2 \times 10^{-3} \)[/tex]:

[tex]\[ 1.44 \times 10^{-6} \times 2.2 \times 10^{-3} = 3.168 \times 10^{-9} \][/tex]

3. Calculate [tex]\( (1.4 \times 10^{-2})^2 \)[/tex]:

[tex]\[ (1.4 \times 10^{-2})^2 = 1.96 \times 10^{-4} \][/tex]

4. Divide the numerator by the denominator:

[tex]\[ K_{\text{eq}} = \frac{3.168 \times 10^{-9}}{1.96 \times 10^{-4}} \][/tex]

Now, perform the division:

[tex]\[ K_{\text{eq}} = 1.616326530612245 \times 10^{-5} \][/tex]

Therefore, the value of [tex]\( K_{\text{eq}} \)[/tex] for the reaction expressed in scientific notation is approximately:

[tex]\[ 1.6 \times 10^{-5} \][/tex]

Hence, the correct answer is:

[tex]\[ 1.6 \times 10^{-5} \][/tex]