Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the equilibrium constant ([tex]\( K_c \)[/tex]) for the reaction [tex]\( N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) \)[/tex], we can use the following expression for the equilibrium constant:
[tex]\[ K_c = \frac{[NH_3]^2}{[N_2] \cdot [H_2]^3} \][/tex]
Given the equilibrium concentrations:
[tex]\[ [NH_3] = 0.105 \, M \][/tex]
[tex]\[ [N_2] = 1.1 \, M \][/tex]
[tex]\[ [H_2] = 1.50 \, M \][/tex]
Now, plug these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{(0.105)^2}{(1.1) \cdot (1.50)^3} \][/tex]
This evaluates to:
[tex]\[ \frac{0.011025}{1.1 \cdot 3.375} \][/tex]
First, calculate the denominator:
[tex]\[ 1.1 \cdot 3.375 = 3.7125 \][/tex]
Now, complete the division:
[tex]\[ K_c = \frac{0.011025}{3.7125} \approx 0.00297 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for this reaction at the given temperature is approximately 0.00297. Among the given choices, the closest value is:
[tex]\[ \boxed{0.0030} \][/tex]
[tex]\[ K_c = \frac{[NH_3]^2}{[N_2] \cdot [H_2]^3} \][/tex]
Given the equilibrium concentrations:
[tex]\[ [NH_3] = 0.105 \, M \][/tex]
[tex]\[ [N_2] = 1.1 \, M \][/tex]
[tex]\[ [H_2] = 1.50 \, M \][/tex]
Now, plug these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{(0.105)^2}{(1.1) \cdot (1.50)^3} \][/tex]
This evaluates to:
[tex]\[ \frac{0.011025}{1.1 \cdot 3.375} \][/tex]
First, calculate the denominator:
[tex]\[ 1.1 \cdot 3.375 = 3.7125 \][/tex]
Now, complete the division:
[tex]\[ K_c = \frac{0.011025}{3.7125} \approx 0.00297 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for this reaction at the given temperature is approximately 0.00297. Among the given choices, the closest value is:
[tex]\[ \boxed{0.0030} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.