Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the Least Common Multiple (LCM) of 45, 28, and 150, follow these steps:
1. List Out Prime Factors:
- Start by finding the prime factors of each number:
- 45: The prime factorization of 45 is [tex]\( 3^2 \times 5 \)[/tex].
- 28: The prime factorization of 28 is [tex]\( 2^2 \times 7 \)[/tex].
- 150: The prime factorization of 150 is [tex]\( 2 \times 3 \times 5^2 \)[/tex].
2. Identify the Maximum Exponent For Each Prime:
- List out all prime factors present in the factorizations:
- The primes involved are 2, 3, 5, and 7.
- Take the highest power of each prime factor from all factorizations:
- The highest power of 2 across 28 and 150 is [tex]\(2^2\)[/tex].
- The highest power of 3 across 45 and 150 is [tex]\(3^2\)[/tex].
- The highest power of 5 across 45 and 150 is [tex]\(5^2\)[/tex].
- The highest power of 7 across 28 is [tex]\(7\)[/tex].
3. Multiply These Highest Powers Together:
- Now, multiply these highest powers together to find the LCM:
[tex]\[ 2^2 \times 3^2 \times 5^2 \times 7 \][/tex]
- Calculating step-by-step:
[tex]\[ 2^2 = 4 \][/tex]
[tex]\[ 3^2 = 9 \][/tex]
[tex]\[ 5^2 = 25 \][/tex]
[tex]\[ 7 = 7 \][/tex]
Multiply these results:
[tex]\[ 4 \times 9 = 36 \][/tex]
[tex]\[ 36 \times 25 = 900 \][/tex]
[tex]\[ 900 \times 7 = 6300 \][/tex]
So, the Least Common Multiple (LCM) of 45, 28, and 150 is [tex]\( 6300 \)[/tex].
1. List Out Prime Factors:
- Start by finding the prime factors of each number:
- 45: The prime factorization of 45 is [tex]\( 3^2 \times 5 \)[/tex].
- 28: The prime factorization of 28 is [tex]\( 2^2 \times 7 \)[/tex].
- 150: The prime factorization of 150 is [tex]\( 2 \times 3 \times 5^2 \)[/tex].
2. Identify the Maximum Exponent For Each Prime:
- List out all prime factors present in the factorizations:
- The primes involved are 2, 3, 5, and 7.
- Take the highest power of each prime factor from all factorizations:
- The highest power of 2 across 28 and 150 is [tex]\(2^2\)[/tex].
- The highest power of 3 across 45 and 150 is [tex]\(3^2\)[/tex].
- The highest power of 5 across 45 and 150 is [tex]\(5^2\)[/tex].
- The highest power of 7 across 28 is [tex]\(7\)[/tex].
3. Multiply These Highest Powers Together:
- Now, multiply these highest powers together to find the LCM:
[tex]\[ 2^2 \times 3^2 \times 5^2 \times 7 \][/tex]
- Calculating step-by-step:
[tex]\[ 2^2 = 4 \][/tex]
[tex]\[ 3^2 = 9 \][/tex]
[tex]\[ 5^2 = 25 \][/tex]
[tex]\[ 7 = 7 \][/tex]
Multiply these results:
[tex]\[ 4 \times 9 = 36 \][/tex]
[tex]\[ 36 \times 25 = 900 \][/tex]
[tex]\[ 900 \times 7 = 6300 \][/tex]
So, the Least Common Multiple (LCM) of 45, 28, and 150 is [tex]\( 6300 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.