Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve for the orbital speed of the planet around the star Rho [tex]${ }^1$[/tex] Cancri step-by-step.
### Step 1: Gather and understand the given data.
1. Mass of the Sun ([tex]\( M_{\text{sun}} \)[/tex]): [tex]\( 1.99 \times 10^{30} \)[/tex] kg
2. Orbital radius of Earth around the Sun: [tex]\( 1.50 \times 10^8 \)[/tex] km = [tex]\( 1.50 \times 10^{11} \)[/tex] meters (since 1 km = 1000 m)
3. Mass of star Rho [tex]${ }^1$[/tex] Cancri ([tex]\( M_{\text{rho}} \)[/tex]): [tex]\( 0.85 \times M_{\text{sun}} \)[/tex]
4. Orbital radius of the planet around Rho [tex]${ }^1$[/tex] Cancri: [tex]\( 0.11 \times \)[/tex] Earth's orbital radius around the Sun
### Step 2: Convert the given values into appropriate units and calculate intermediate values.
1. Mass of Rho [tex]${ }^1$[/tex] Cancri:
[tex]\[ M_{\text{rho}} = 0.85 \times 1.99 \times 10^{30} \, \text{kg} = 1.6915 \times 10^{30} \, \text{kg} \][/tex]
2. Orbital radius of the planet around Rho [tex]${ }^1$[/tex] Cancri:
[tex]\[ \text{Orbital Radius} = 0.11 \times 1.50 \times 10^{11} \, \text{m} = 1.65 \times 10^{10} \, \text{m} \][/tex]
### Step 3: Use the formula for orbital speed.
The formula for the orbital speed ([tex]\( v \)[/tex]) of a planet in a circular orbit is given by:
[tex]\[ v = \sqrt{\frac{G \times M_{\text{star}}}{r}} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- [tex]\( M_{\text{star}} \)[/tex] is the mass of the star (Rho [tex]${ }^1$[/tex] Cancri in this case)
- [tex]\( r \)[/tex] is the orbital radius of the planet
### Step 4: Substitute the values into the formula.
[tex]\[ v = \sqrt{\frac{6.67430 \times 10^{-11} \times 1.6915 \times 10^{30}}{1.65 \times 10^{10}}} \][/tex]
### Step 5: Calculate the orbital speed.
Let's compute this:
Numerator:
[tex]\[ 6.67430 \times 10^{-11} \times 1.6915 \times 10^{30} = 1.128379745 \times 10^{20} \][/tex]
Denominator:
[tex]\[ 1.65 \times 10^{10} \][/tex]
Now, we divide:
[tex]\[ \frac{1.128379745 \times 10^{20}}{1.65 \times 10^{10}} = 6.838665 \times 10^9 \][/tex]
Finally, take the square root:
[tex]\[ v = \sqrt{6.838665 \times 10^9} \approx 82717.4 \, \text{m/s} \][/tex]
### Conclusion:
The orbital speed of the planet around Rho [tex]${ }^1$[/tex] Cancri is approximately [tex]\( 82717.4 \, \text{m/s} \)[/tex].
### Step 1: Gather and understand the given data.
1. Mass of the Sun ([tex]\( M_{\text{sun}} \)[/tex]): [tex]\( 1.99 \times 10^{30} \)[/tex] kg
2. Orbital radius of Earth around the Sun: [tex]\( 1.50 \times 10^8 \)[/tex] km = [tex]\( 1.50 \times 10^{11} \)[/tex] meters (since 1 km = 1000 m)
3. Mass of star Rho [tex]${ }^1$[/tex] Cancri ([tex]\( M_{\text{rho}} \)[/tex]): [tex]\( 0.85 \times M_{\text{sun}} \)[/tex]
4. Orbital radius of the planet around Rho [tex]${ }^1$[/tex] Cancri: [tex]\( 0.11 \times \)[/tex] Earth's orbital radius around the Sun
### Step 2: Convert the given values into appropriate units and calculate intermediate values.
1. Mass of Rho [tex]${ }^1$[/tex] Cancri:
[tex]\[ M_{\text{rho}} = 0.85 \times 1.99 \times 10^{30} \, \text{kg} = 1.6915 \times 10^{30} \, \text{kg} \][/tex]
2. Orbital radius of the planet around Rho [tex]${ }^1$[/tex] Cancri:
[tex]\[ \text{Orbital Radius} = 0.11 \times 1.50 \times 10^{11} \, \text{m} = 1.65 \times 10^{10} \, \text{m} \][/tex]
### Step 3: Use the formula for orbital speed.
The formula for the orbital speed ([tex]\( v \)[/tex]) of a planet in a circular orbit is given by:
[tex]\[ v = \sqrt{\frac{G \times M_{\text{star}}}{r}} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- [tex]\( M_{\text{star}} \)[/tex] is the mass of the star (Rho [tex]${ }^1$[/tex] Cancri in this case)
- [tex]\( r \)[/tex] is the orbital radius of the planet
### Step 4: Substitute the values into the formula.
[tex]\[ v = \sqrt{\frac{6.67430 \times 10^{-11} \times 1.6915 \times 10^{30}}{1.65 \times 10^{10}}} \][/tex]
### Step 5: Calculate the orbital speed.
Let's compute this:
Numerator:
[tex]\[ 6.67430 \times 10^{-11} \times 1.6915 \times 10^{30} = 1.128379745 \times 10^{20} \][/tex]
Denominator:
[tex]\[ 1.65 \times 10^{10} \][/tex]
Now, we divide:
[tex]\[ \frac{1.128379745 \times 10^{20}}{1.65 \times 10^{10}} = 6.838665 \times 10^9 \][/tex]
Finally, take the square root:
[tex]\[ v = \sqrt{6.838665 \times 10^9} \approx 82717.4 \, \text{m/s} \][/tex]
### Conclusion:
The orbital speed of the planet around Rho [tex]${ }^1$[/tex] Cancri is approximately [tex]\( 82717.4 \, \text{m/s} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.