At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve this step-by-step.
### 1. Determine the Limiting Reactant:
First, we need to figure out which reactant is the limiting reagent since it will determine the maximum amount of product that can be formed.
Balanced Chemical Equation:
[tex]$ 4 Al (s) + 3 O_2 (g) \rightarrow 2 Al_2O_3 (s) $[/tex]
Given Quantities:
- [tex]\(0.500 \, \text{mol Al}\)[/tex]
- [tex]\(0.500 \, \text{mol O}_2\)[/tex]
1. For Aluminum (Al):
To fully react with [tex]\( 0.500 \)[/tex] moles of [tex]\( \text{Al} \)[/tex]:
[tex]\[ 0.500\, \text{mol Al} \times \left(\frac{3 \, \text{mol O}_2}{4 \, \text{mol Al}}\right) = 0.375 \, \text{mol O}_2 \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol O}_2\)[/tex] available.
2. For Oxygen (O}_2):
To fully react with [tex]\(0.500 \, \text{mol O}_2\)[/tex]:
[tex]\[ 0.500\, \text{mol O}_2 \times \left(\frac{4 \, \text{mol Al}}{3 \, \text{mol O}_2}\right) = 0.667 \, \text{mol Al} \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol Al}\)[/tex] available.
Since [tex]\(0.500 \, \text{mol O}_2\)[/tex] is available and only [tex]\(0.375 \, \text{mol O}_2\)[/tex] is required for [tex]\(0.500 \, \text{mol Al}\)[/tex]:
- [tex]\( \text{Al}\)[/tex] is in excess.
- [tex]\( \text{O}_2\)[/tex] is the limiting reactant.
### 2. Calculate Theoretical Yield of Aluminum Oxide ([tex]\( Al_2O_3 \)[/tex]):
Using the limiting reactant ([tex]\( O_2 \)[/tex]) to calculate the yield of [tex]\( Al_2O_3 \)[/tex]:
[tex]\[ \text{Moles of } Al_2O_3 = 0.500 \, \text{mol O}_2 \times \left(\frac{2 \, \text{mol Al}_2O_3}{3 \, \text{mol O}_2}\right) = 0.333 \, \text{mol Al}_2O_3 \][/tex]
### 3. Convert Moles of [tex]\( Al_2O_3 \)[/tex] to Mass:
Given the molar mass of [tex]\( Al_2O_3 \)[/tex] is [tex]\(101.96 \, \text{g/mol}\)[/tex]:
[tex]\[ \text{Mass of } Al_2O_3 = 0.333 \, \text{mol Al}_2O_3 \times 101.96 \, \text{g/mol} = 33.99 \, \text{g} \][/tex]
### Conclusion:
The theoretical yield of aluminum oxide ([tex]\( Al_2O_3 \)[/tex]) when [tex]\( 0.500 \, \text{mol Al}\)[/tex] reacts with [tex]\( 0.500 \, \text{mol } O_2\)[/tex] is:
- Moles of [tex]\( Al_2O_3\)[/tex]: [tex]\(0.333 \, \text{mol} \)[/tex]
- Mass of [tex]\( Al_2O_3\)[/tex]: [tex]\(33.99 \, \text{g} \)[/tex]
So the maximum amount of aluminum oxide that can be produced under these conditions is [tex]\(33.99 \, \text{grams}\)[/tex].
### 1. Determine the Limiting Reactant:
First, we need to figure out which reactant is the limiting reagent since it will determine the maximum amount of product that can be formed.
Balanced Chemical Equation:
[tex]$ 4 Al (s) + 3 O_2 (g) \rightarrow 2 Al_2O_3 (s) $[/tex]
Given Quantities:
- [tex]\(0.500 \, \text{mol Al}\)[/tex]
- [tex]\(0.500 \, \text{mol O}_2\)[/tex]
1. For Aluminum (Al):
To fully react with [tex]\( 0.500 \)[/tex] moles of [tex]\( \text{Al} \)[/tex]:
[tex]\[ 0.500\, \text{mol Al} \times \left(\frac{3 \, \text{mol O}_2}{4 \, \text{mol Al}}\right) = 0.375 \, \text{mol O}_2 \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol O}_2\)[/tex] available.
2. For Oxygen (O}_2):
To fully react with [tex]\(0.500 \, \text{mol O}_2\)[/tex]:
[tex]\[ 0.500\, \text{mol O}_2 \times \left(\frac{4 \, \text{mol Al}}{3 \, \text{mol O}_2}\right) = 0.667 \, \text{mol Al} \, \text{required} \][/tex]
However, we have [tex]\(0.500 \, \text{mol Al}\)[/tex] available.
Since [tex]\(0.500 \, \text{mol O}_2\)[/tex] is available and only [tex]\(0.375 \, \text{mol O}_2\)[/tex] is required for [tex]\(0.500 \, \text{mol Al}\)[/tex]:
- [tex]\( \text{Al}\)[/tex] is in excess.
- [tex]\( \text{O}_2\)[/tex] is the limiting reactant.
### 2. Calculate Theoretical Yield of Aluminum Oxide ([tex]\( Al_2O_3 \)[/tex]):
Using the limiting reactant ([tex]\( O_2 \)[/tex]) to calculate the yield of [tex]\( Al_2O_3 \)[/tex]:
[tex]\[ \text{Moles of } Al_2O_3 = 0.500 \, \text{mol O}_2 \times \left(\frac{2 \, \text{mol Al}_2O_3}{3 \, \text{mol O}_2}\right) = 0.333 \, \text{mol Al}_2O_3 \][/tex]
### 3. Convert Moles of [tex]\( Al_2O_3 \)[/tex] to Mass:
Given the molar mass of [tex]\( Al_2O_3 \)[/tex] is [tex]\(101.96 \, \text{g/mol}\)[/tex]:
[tex]\[ \text{Mass of } Al_2O_3 = 0.333 \, \text{mol Al}_2O_3 \times 101.96 \, \text{g/mol} = 33.99 \, \text{g} \][/tex]
### Conclusion:
The theoretical yield of aluminum oxide ([tex]\( Al_2O_3 \)[/tex]) when [tex]\( 0.500 \, \text{mol Al}\)[/tex] reacts with [tex]\( 0.500 \, \text{mol } O_2\)[/tex] is:
- Moles of [tex]\( Al_2O_3\)[/tex]: [tex]\(0.333 \, \text{mol} \)[/tex]
- Mass of [tex]\( Al_2O_3\)[/tex]: [tex]\(33.99 \, \text{g} \)[/tex]
So the maximum amount of aluminum oxide that can be produced under these conditions is [tex]\(33.99 \, \text{grams}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.