At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's begin by solving the problem step-by-step:
Given:
- A square sheet of paper with side length of [tex]\(25 \text{ cm}\)[/tex].
- A small square portion with side length of [tex]\(9 \text{ cm}\)[/tex] is cut out from it.
To Find:
- The area of the remaining portion of the paper after the small square has been cut out.
1. Calculate the Area of the Original Square Sheet:
The area [tex]\(A\)[/tex] of a square is given by the formula:
[tex]\[ A = \text{side length}^2 \][/tex]
For the original square sheet,
[tex]\[ A_{\text{original}} = 25 \text{ cm} \times 25 \text{ cm} = 625 \text{ cm}^2 \][/tex]
2. Calculate the Area of the Small Square that is Cut Out:
Similarly, for the small square,
[tex]\[ A_{\text{cut-out}} = 9 \text{ cm} \times 9 \text{ cm} = 81 \text{ cm}^2 \][/tex]
3. Calculate the Area of the Remaining Portion of the Paper:
The area of the remaining portion is the area of the original square sheet minus the area of the small square cut out:
[tex]\[ A_{\text{remaining}} = A_{\text{original}} - A_{\text{cut-out}} \][/tex]
Substitute the respective areas calculated:
[tex]\[ A_{\text{remaining}} = 625 \text{ cm}^2 - 81 \text{ cm}^2 = 544 \text{ cm}^2 \][/tex]
Therefore, the area of the remaining portion of the paper is [tex]\(544 \text{ cm}^2\)[/tex].
Given:
- A square sheet of paper with side length of [tex]\(25 \text{ cm}\)[/tex].
- A small square portion with side length of [tex]\(9 \text{ cm}\)[/tex] is cut out from it.
To Find:
- The area of the remaining portion of the paper after the small square has been cut out.
1. Calculate the Area of the Original Square Sheet:
The area [tex]\(A\)[/tex] of a square is given by the formula:
[tex]\[ A = \text{side length}^2 \][/tex]
For the original square sheet,
[tex]\[ A_{\text{original}} = 25 \text{ cm} \times 25 \text{ cm} = 625 \text{ cm}^2 \][/tex]
2. Calculate the Area of the Small Square that is Cut Out:
Similarly, for the small square,
[tex]\[ A_{\text{cut-out}} = 9 \text{ cm} \times 9 \text{ cm} = 81 \text{ cm}^2 \][/tex]
3. Calculate the Area of the Remaining Portion of the Paper:
The area of the remaining portion is the area of the original square sheet minus the area of the small square cut out:
[tex]\[ A_{\text{remaining}} = A_{\text{original}} - A_{\text{cut-out}} \][/tex]
Substitute the respective areas calculated:
[tex]\[ A_{\text{remaining}} = 625 \text{ cm}^2 - 81 \text{ cm}^2 = 544 \text{ cm}^2 \][/tex]
Therefore, the area of the remaining portion of the paper is [tex]\(544 \text{ cm}^2\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.