At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's break down each part of the problem step by step and resolve the equations.
1. Resolving the fourth root of 81:
[tex]\[ \sqrt[4]{81} \][/tex]
To find the fourth root of 81, we look for a number which, when raised to the power of 4, equals 81. The correct value is 3, because [tex]\(3^4 = 81\)[/tex].
[tex]\[ \sqrt[4]{81} = 3 \][/tex]
2. Calculating [tex]\(-\sqrt{9 \times 9}\)[/tex]:
[tex]\[ -\sqrt{9 \times 9} \][/tex]
First, calculate [tex]\(9 \times 9\)[/tex]:
[tex]\[ 9 \times 9 = 81 \][/tex]
Then, find the square root of 81:
[tex]\[ \sqrt{81} = 9 \][/tex]
Finally, apply the negative sign:
[tex]\[ -\sqrt{81} = -9 \][/tex]
3. Resolving the cube root of 64:
[tex]\[ \sqrt[3]{64} \][/tex]
To find the cube root of 64, we look for a number which, when raised to the power of 3, equals 64. The correct value is approximately 4.
So,
[tex]\[ \sqrt[3]{64} \approx 4 \][/tex]
4. Resolving the fifth root of 64:
[tex]\[ \sqrt[5]{64} \][/tex]
To find the fifth root of 64, we look for a number which, when raised to the power of 5, equals 64. The result is approximately 2.297.
So,
[tex]\[ \sqrt[5]{64} \approx 2.297 \][/tex]
5. Calculating the square root of 125:
[tex]\[ \sqrt{125} \][/tex]
The square root of 125 is approximately 11.180.
Thus,
[tex]\[ \sqrt{125} \approx 11.180 \][/tex]
Combining all results together, we have:
[tex]\[ \begin{aligned} \sqrt[4]{81} & = 3, \\ -\sqrt{9 \times 9} & = -9, \\ \sqrt[3]{64} & \approx 4, \\ \sqrt[5]{64} & \approx 2.297, \\ \sqrt{125} & \approx 11.180. \end{aligned} \][/tex]
These are the step-by-step solutions to the given mathematical expressions.
1. Resolving the fourth root of 81:
[tex]\[ \sqrt[4]{81} \][/tex]
To find the fourth root of 81, we look for a number which, when raised to the power of 4, equals 81. The correct value is 3, because [tex]\(3^4 = 81\)[/tex].
[tex]\[ \sqrt[4]{81} = 3 \][/tex]
2. Calculating [tex]\(-\sqrt{9 \times 9}\)[/tex]:
[tex]\[ -\sqrt{9 \times 9} \][/tex]
First, calculate [tex]\(9 \times 9\)[/tex]:
[tex]\[ 9 \times 9 = 81 \][/tex]
Then, find the square root of 81:
[tex]\[ \sqrt{81} = 9 \][/tex]
Finally, apply the negative sign:
[tex]\[ -\sqrt{81} = -9 \][/tex]
3. Resolving the cube root of 64:
[tex]\[ \sqrt[3]{64} \][/tex]
To find the cube root of 64, we look for a number which, when raised to the power of 3, equals 64. The correct value is approximately 4.
So,
[tex]\[ \sqrt[3]{64} \approx 4 \][/tex]
4. Resolving the fifth root of 64:
[tex]\[ \sqrt[5]{64} \][/tex]
To find the fifth root of 64, we look for a number which, when raised to the power of 5, equals 64. The result is approximately 2.297.
So,
[tex]\[ \sqrt[5]{64} \approx 2.297 \][/tex]
5. Calculating the square root of 125:
[tex]\[ \sqrt{125} \][/tex]
The square root of 125 is approximately 11.180.
Thus,
[tex]\[ \sqrt{125} \approx 11.180 \][/tex]
Combining all results together, we have:
[tex]\[ \begin{aligned} \sqrt[4]{81} & = 3, \\ -\sqrt{9 \times 9} & = -9, \\ \sqrt[3]{64} & \approx 4, \\ \sqrt[5]{64} & \approx 2.297, \\ \sqrt{125} & \approx 11.180. \end{aligned} \][/tex]
These are the step-by-step solutions to the given mathematical expressions.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.