At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Favian received a [tex]\$100[/tex] gift card to a clothing store. Using only the gift card, he was able to purchase [tex]n[/tex] sweaters that cost [tex]\$32[/tex] each and 1 belt for [tex]\$20[/tex]. If there was no tax on the sweaters and belt, which of the following must be true?

A. [tex]\frac{80}{n} \geq 32[/tex]
B. [tex]\frac{32}{n} \geq 80[/tex]
C. [tex]\frac{80}{n} \leq 32[/tex]
D. [tex]100 - 32n \leq 20[/tex]


Sagot :

Let's go through the problem step by step to determine the correct answers.

1. Favian received a [tex]$100 gift card. 2. He bought 1 belt costing $[/tex]20.
3. He used the remaining amount to buy [tex]\( n \)[/tex] sweaters, each costing [tex]$32. First, let's find the remaining amount after buying the belt: \[ 100 - 20 = 80 \] Now, we need to determine how many sweaters (n) he can buy with the remaining $[/tex]80:
[tex]\[ n \times 32 = 80 \][/tex]
[tex]\[ n = \frac{80}{32} \][/tex]
[tex]\[ n = 2.5 \][/tex]

Since [tex]\( n \)[/tex] must be an integer (you can only buy whole sweaters), we reconsider and understand that he most likely bought 2 sweaters. We correct the facts and resolve:
[tex]\[ n = 2 \][/tex]
[tex]\[ 2 \times 32 = 64 \][/tex]
[tex]\[ 80 - 64 = 16 \][/tex]

So now [tex]\( n = 2 \)[/tex].

Next, let's evaluate the given statements one by one.

1. [tex]\( 80 \div n \geq 32 \)[/tex]:
[tex]\[ 80 \div 2 = 40 \][/tex]
[tex]\[ 40 \geq 32 \][/tex]
This statement is true.

2. [tex]\( 32 \div n \geq 80 \)[/tex]:
[tex]\[ 32 \div 2 = 16 \][/tex]
[tex]\[ 16 \geq 80 \][/tex]
This statement is false.

3. [tex]\( 80 \div n \leq 32 \)[/tex]:
[tex]\[ 80 \div 2 = 40 \][/tex]
[tex]\[ 40 \leq 32 \][/tex]
This statement is false.

4. [tex]\( 100 - 32 \pi \leq 20 \)[/tex]:
Let's consider [tex]\( 32 \pi \approx 100.48 \)[/tex] (using the approximation [tex]\(\pi \approx 3.14\)[/tex]):
[tex]\[ 100 - 32 \times 3.14 \approx 100 - 100.48 = -0.48 \][/tex]
Since [tex]\(-0.48 \leq 20\)[/tex], the statement is true.

Summarizing:
1. [tex]\( 80 \div n \geq 32 \)[/tex]: TRUE
2. [tex]\( 32 \div n \geq 80 \)[/tex]: FALSE
3. [tex]\( 80 \div n \leq 32 \)[/tex]: FALSE
4. [tex]\( 100 - 32 \pi \leq 20 \)[/tex]: TRUE

Therefore, the correct statements are:
- [tex]\( 80 \div n \geq 32 \)[/tex]
- [tex]\( 100 - 32 \pi \leq 20 \)[/tex]