Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the given problem, let's break it down into several steps.
1. Find [tex]\( f'(x) \)[/tex] - the derivative of [tex]\( f(x) \)[/tex] using the quotient rule.
2. Evaluate the derivative at [tex]\( a = \frac{\pi}{4} \)[/tex] to find the slope of the tangent line.
3. Find the value of the function at [tex]\( a = \frac{\pi}{4} \)[/tex].
4. Find the equation of the tangent line using the point-slope form of a line.
Let's start from the top.
### Step 1: Finding [tex]\( f'(x) \)[/tex]
Given the function:
[tex]\[ f(x) = \frac{6 \sin x}{2 \sin x + 4 \cos x} \][/tex]
We use the quotient rule for differentiation:
[tex]\[ f'(x) = \frac{u'v - uv'}{v^2} \][/tex]
where [tex]\( u = 6 \sin x \)[/tex] and [tex]\( v = 2 \sin x + 4 \cos x \)[/tex].
First, we find the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u' = 6 \cos x \][/tex]
[tex]\[ v' = 2 \cos x - 4 \sin x \][/tex]
Applying the quotient rule:
[tex]\[ f'(x) = \frac{(6 \cos x)(2 \sin x + 4 \cos x) - (6 \sin x)(2 \cos x - 4 \sin x)}{(2 \sin x + 4 \cos x)^2} \][/tex]
Simplify the numerator:
[tex]\[ \text{Numerator} = 6 \cos x (2 \sin x + 4 \cos x) - 6 \sin x (2 \cos x - 4 \sin x) \][/tex]
[tex]\[ = 12 \cos x \sin x + 24 \cos^2 x - 12 \sin x \cos x + 24 \sin^2 x \][/tex]
[tex]\[ = 24 \cos^2 x + 24 \sin^2 x \][/tex]
[tex]\[ = 24 (\cos^2 x + \sin^2 x) \][/tex]
[tex]\[ = 24 \][/tex]
Note: The actual derived formula from the solution is a symbolic representation. Here we have:
[tex]\[ f'(x) = \frac{6 \cos x (2 \sin x + 4 \cos x) + 6 (4 \sin x - 2 \cos x) \sin x}{(2 \sin x + 4 \cos x)^2} \][/tex]
Thus:
[tex]\[ f'(x) = \frac{6\cos(x)}{2\sin(x) + 4\cos(x)} + \frac{6(4\sin(x) - 2\cos(x))\sin(x)}{(2\sin(x) + 4\cos(x))^2} \][/tex]
### Step 2: Evaluate the derivative at [tex]\( a = \frac{\pi}{4} \)[/tex]
We need to find [tex]\( f'(\pi/4) \)[/tex].
From the result:
[tex]\[ f'(\frac{\pi}{4}) = 1.33333333333333 \][/tex]
So, the slope [tex]\( m \)[/tex] of the tangent line at [tex]\( x = \frac{\pi}{4} \)[/tex]:
[tex]\[ m = 1.33333333333333 \][/tex]
### Step 3: Find [tex]\( f\left(\frac{\pi}{4}\right) \)[/tex]
Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = \frac{\pi}{4} \)[/tex]:
[tex]\[ f(\frac{\pi}{4}) = \frac{6 \sin(\frac{\pi}{4})}{2 \sin(\frac{\pi}{4}) + 4 \cos(\frac{\pi}{4})} \][/tex]
[tex]\[ = \frac{6 \cdot \frac{\sqrt{2}}{2}}{2 \cdot \frac{\sqrt{2}}{2} + 4 \cdot \frac{\sqrt{2}}{2}} \][/tex]
[tex]\[ = \frac{6 \cdot \frac{\sqrt{2}}{2}}{ \frac{2\sqrt{2}}{2} + \frac{4\sqrt{2}}{2}} \][/tex]
[tex]\[ = \frac{6 \cdot \frac{\sqrt{2}}{2}}{ \sqrt{2} + 2\sqrt{2}} \][/tex]
[tex]\[ = \frac{3\sqrt{2}}{ 3\sqrt{2}} = 1 \][/tex]
So, the value [tex]\( f \left( \frac{\pi}{4} \right) = 1 \)[/tex].
### Step 4: Find the equation of the tangent line
We use the point-slope form of a line equation:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Where [tex]\( m = 1.33333333333333 \)[/tex], [tex]\( x_1 = \frac{\pi}{4} \)[/tex], and [tex]\( y_1 = 1 \)[/tex].
Rearrange to the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = 1.33333333333333 x + b \][/tex]
Now, calculate [tex]\( b \)[/tex]:
[tex]\[ 1 = 1.33333333333333 \cdot \frac{\pi}{4} + b \][/tex]
[tex]\[ b = 1 - 1.33333333333333 \cdot \frac{\pi}{4} \][/tex]
From the result, [tex]\( b = 1.0 - 0.333333333333333\pi \)[/tex].
Putting it together:
- The slope [tex]\( m = 1.33333333333333 \)[/tex].
- The y-intercept [tex]\( b = 1.0 - 0.333333333333333\pi \)[/tex].
Thus, the equation of the tangent line is:
[tex]\[ y = 1.33333333333333x + 1.0 - 0.333333333333333\pi \][/tex]
1. Find [tex]\( f'(x) \)[/tex] - the derivative of [tex]\( f(x) \)[/tex] using the quotient rule.
2. Evaluate the derivative at [tex]\( a = \frac{\pi}{4} \)[/tex] to find the slope of the tangent line.
3. Find the value of the function at [tex]\( a = \frac{\pi}{4} \)[/tex].
4. Find the equation of the tangent line using the point-slope form of a line.
Let's start from the top.
### Step 1: Finding [tex]\( f'(x) \)[/tex]
Given the function:
[tex]\[ f(x) = \frac{6 \sin x}{2 \sin x + 4 \cos x} \][/tex]
We use the quotient rule for differentiation:
[tex]\[ f'(x) = \frac{u'v - uv'}{v^2} \][/tex]
where [tex]\( u = 6 \sin x \)[/tex] and [tex]\( v = 2 \sin x + 4 \cos x \)[/tex].
First, we find the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u' = 6 \cos x \][/tex]
[tex]\[ v' = 2 \cos x - 4 \sin x \][/tex]
Applying the quotient rule:
[tex]\[ f'(x) = \frac{(6 \cos x)(2 \sin x + 4 \cos x) - (6 \sin x)(2 \cos x - 4 \sin x)}{(2 \sin x + 4 \cos x)^2} \][/tex]
Simplify the numerator:
[tex]\[ \text{Numerator} = 6 \cos x (2 \sin x + 4 \cos x) - 6 \sin x (2 \cos x - 4 \sin x) \][/tex]
[tex]\[ = 12 \cos x \sin x + 24 \cos^2 x - 12 \sin x \cos x + 24 \sin^2 x \][/tex]
[tex]\[ = 24 \cos^2 x + 24 \sin^2 x \][/tex]
[tex]\[ = 24 (\cos^2 x + \sin^2 x) \][/tex]
[tex]\[ = 24 \][/tex]
Note: The actual derived formula from the solution is a symbolic representation. Here we have:
[tex]\[ f'(x) = \frac{6 \cos x (2 \sin x + 4 \cos x) + 6 (4 \sin x - 2 \cos x) \sin x}{(2 \sin x + 4 \cos x)^2} \][/tex]
Thus:
[tex]\[ f'(x) = \frac{6\cos(x)}{2\sin(x) + 4\cos(x)} + \frac{6(4\sin(x) - 2\cos(x))\sin(x)}{(2\sin(x) + 4\cos(x))^2} \][/tex]
### Step 2: Evaluate the derivative at [tex]\( a = \frac{\pi}{4} \)[/tex]
We need to find [tex]\( f'(\pi/4) \)[/tex].
From the result:
[tex]\[ f'(\frac{\pi}{4}) = 1.33333333333333 \][/tex]
So, the slope [tex]\( m \)[/tex] of the tangent line at [tex]\( x = \frac{\pi}{4} \)[/tex]:
[tex]\[ m = 1.33333333333333 \][/tex]
### Step 3: Find [tex]\( f\left(\frac{\pi}{4}\right) \)[/tex]
Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = \frac{\pi}{4} \)[/tex]:
[tex]\[ f(\frac{\pi}{4}) = \frac{6 \sin(\frac{\pi}{4})}{2 \sin(\frac{\pi}{4}) + 4 \cos(\frac{\pi}{4})} \][/tex]
[tex]\[ = \frac{6 \cdot \frac{\sqrt{2}}{2}}{2 \cdot \frac{\sqrt{2}}{2} + 4 \cdot \frac{\sqrt{2}}{2}} \][/tex]
[tex]\[ = \frac{6 \cdot \frac{\sqrt{2}}{2}}{ \frac{2\sqrt{2}}{2} + \frac{4\sqrt{2}}{2}} \][/tex]
[tex]\[ = \frac{6 \cdot \frac{\sqrt{2}}{2}}{ \sqrt{2} + 2\sqrt{2}} \][/tex]
[tex]\[ = \frac{3\sqrt{2}}{ 3\sqrt{2}} = 1 \][/tex]
So, the value [tex]\( f \left( \frac{\pi}{4} \right) = 1 \)[/tex].
### Step 4: Find the equation of the tangent line
We use the point-slope form of a line equation:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Where [tex]\( m = 1.33333333333333 \)[/tex], [tex]\( x_1 = \frac{\pi}{4} \)[/tex], and [tex]\( y_1 = 1 \)[/tex].
Rearrange to the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = 1.33333333333333 x + b \][/tex]
Now, calculate [tex]\( b \)[/tex]:
[tex]\[ 1 = 1.33333333333333 \cdot \frac{\pi}{4} + b \][/tex]
[tex]\[ b = 1 - 1.33333333333333 \cdot \frac{\pi}{4} \][/tex]
From the result, [tex]\( b = 1.0 - 0.333333333333333\pi \)[/tex].
Putting it together:
- The slope [tex]\( m = 1.33333333333333 \)[/tex].
- The y-intercept [tex]\( b = 1.0 - 0.333333333333333\pi \)[/tex].
Thus, the equation of the tangent line is:
[tex]\[ y = 1.33333333333333x + 1.0 - 0.333333333333333\pi \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.