Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the value of [tex]\( p \)[/tex] for the given series, we start with the series:
[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]
We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.
First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:
[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]
This can be simplified further. Using the power rule for exponents:
[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]
Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:
[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]
Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:
[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]
Hence, our original series now looks like:
[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]
We can combine the exponents for [tex]\( n \)[/tex]:
[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]
So our series is now:
[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]
This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].
So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = 4 \][/tex]
[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]
We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.
First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:
[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]
This can be simplified further. Using the power rule for exponents:
[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]
Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:
[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]
Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:
[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]
Hence, our original series now looks like:
[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]
We can combine the exponents for [tex]\( n \)[/tex]:
[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]
So our series is now:
[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]
This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].
So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = 4 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.