Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the value of [tex]\( p \)[/tex] for the given series, we start with the series:
[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]
We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.
First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:
[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]
This can be simplified further. Using the power rule for exponents:
[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]
Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:
[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]
Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:
[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]
Hence, our original series now looks like:
[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]
We can combine the exponents for [tex]\( n \)[/tex]:
[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]
So our series is now:
[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]
This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].
So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = 4 \][/tex]
[tex]\[ \sum_{n=1}^{\infty} n^2 \left( 4^{-3 \ln(n)} \right) \][/tex]
We can use the exponentiation property [tex]\( a^{\log_b(x)} = x^{\log_b(a)} \)[/tex] to simplify the expression inside the sum.
First, let's deal with the term [tex]\( 4^{-3 \ln(n)} \)[/tex]. We can rewrite 4 as [tex]\( 2^2 \)[/tex], so we have:
[tex]\[ 4^{-3 \ln(n)} = (2^2)^{-3 \ln(n)} \][/tex]
This can be simplified further. Using the power rule for exponents:
[tex]\[ (2^2)^{-3 \ln(n)} = 2^{2 \cdot (-3 \ln(n))} = 2^{-6 \ln(n)} \][/tex]
Next, we take advantage of the property of exponents involving logarithms. Recall that [tex]\( 2^{-6 \ln(n)} = n^{\log_2(2^{-6})} \)[/tex]. Therefore:
[tex]\[ 2^{-6 \ln(n)} = n^{-6 \ln(2)} \][/tex]
Since [tex]\( \ln(2) \)[/tex] is a constant, this can be interpreted as:
[tex]\[ 2^{-6 \ln(n)} = n^{-6} \][/tex]
Hence, our original series now looks like:
[tex]\[ \sum_{n=1}^{\infty} n^2 \cdot n^{-6} \][/tex]
We can combine the exponents for [tex]\( n \)[/tex]:
[tex]\[ n^2 \cdot n^{-6} = n^{2 + (-6)} = n^{-4} \][/tex]
So our series is now:
[tex]\[ \sum_{n=1}^{\infty} n^{-4} \][/tex]
This matches the form of a [tex]\( p \)[/tex]-series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex], where [tex]\( p = 4 \)[/tex].
So, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = 4 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.