Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the range of the function [tex]\( g(x) = \frac{2}{3} x - 1 \)[/tex] given the domain [tex]\( (-\infty, 3] \)[/tex], we need to understand how the values of [tex]\( g(x) \)[/tex] vary as [tex]\( x \)[/tex] takes on values within this domain.
1. Understanding the Linear Function:
The function [tex]\( g(x) = \frac{2}{3} x - 1 \)[/tex] is a linear function. Linear functions produce straight lines when graphed and have the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
Here, [tex]\( m = \frac{2}{3} \)[/tex] and [tex]\( b = -1 \)[/tex].
2. Evaluating at the Boundary Conditions:
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex]:
[tex]\[ g(x) = \frac{2}{3} x - 1 \Rightarrow \text{As } x \to -\infty, \; g(x) \to -\infty \][/tex]
This means that as [tex]\( x \)[/tex] becomes arbitrarily large in the negative direction, [tex]\( g(x) \)[/tex] becomes arbitrarily large in the negative direction as well.
- At the upper limit of the domain, [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = \frac{2}{3} \cdot 3 - 1 = 2 - 1 = 1 \][/tex]
This means that when [tex]\( x \)[/tex] reaches its maximum value of 3 within the domain, [tex]\( g(x) \)[/tex] reaches its maximum value of 1.
3. Determining the Range:
Given the behavior of [tex]\( g(x) \)[/tex] at the boundaries:
- As [tex]\( x \)[/tex] decreases without bound, [tex]\( g(x) \)[/tex] also decreases without bound, meaning [tex]\( g(x) \to -\infty \)[/tex].
- When [tex]\( x \)[/tex] is at its maximum value of 3, [tex]\( g(x) \)[/tex] reaches exactly 1.
From these observations, the range of [tex]\( g(x) \)[/tex] includes all values starting from [tex]\(-\infty\)[/tex] up to and including 1, because [tex]\( g(x) \)[/tex] can take any value in this interval as [tex]\( x \)[/tex] varies over its domain.
Therefore, the range of [tex]\( g(x) \)[/tex] given the domain [tex]\( (-\infty, 3] \)[/tex] is:
[tex]\[ \boxed{(-\infty, 1]} \][/tex]
1. Understanding the Linear Function:
The function [tex]\( g(x) = \frac{2}{3} x - 1 \)[/tex] is a linear function. Linear functions produce straight lines when graphed and have the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
Here, [tex]\( m = \frac{2}{3} \)[/tex] and [tex]\( b = -1 \)[/tex].
2. Evaluating at the Boundary Conditions:
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex]:
[tex]\[ g(x) = \frac{2}{3} x - 1 \Rightarrow \text{As } x \to -\infty, \; g(x) \to -\infty \][/tex]
This means that as [tex]\( x \)[/tex] becomes arbitrarily large in the negative direction, [tex]\( g(x) \)[/tex] becomes arbitrarily large in the negative direction as well.
- At the upper limit of the domain, [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = \frac{2}{3} \cdot 3 - 1 = 2 - 1 = 1 \][/tex]
This means that when [tex]\( x \)[/tex] reaches its maximum value of 3 within the domain, [tex]\( g(x) \)[/tex] reaches its maximum value of 1.
3. Determining the Range:
Given the behavior of [tex]\( g(x) \)[/tex] at the boundaries:
- As [tex]\( x \)[/tex] decreases without bound, [tex]\( g(x) \)[/tex] also decreases without bound, meaning [tex]\( g(x) \to -\infty \)[/tex].
- When [tex]\( x \)[/tex] is at its maximum value of 3, [tex]\( g(x) \)[/tex] reaches exactly 1.
From these observations, the range of [tex]\( g(x) \)[/tex] includes all values starting from [tex]\(-\infty\)[/tex] up to and including 1, because [tex]\( g(x) \)[/tex] can take any value in this interval as [tex]\( x \)[/tex] varies over its domain.
Therefore, the range of [tex]\( g(x) \)[/tex] given the domain [tex]\( (-\infty, 3] \)[/tex] is:
[tex]\[ \boxed{(-\infty, 1]} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.