Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the range of the function [tex]\( g(x) = \frac{2}{3} x - 1 \)[/tex] given the domain [tex]\( (-\infty, 3] \)[/tex], we need to understand how the values of [tex]\( g(x) \)[/tex] vary as [tex]\( x \)[/tex] takes on values within this domain.
1. Understanding the Linear Function:
The function [tex]\( g(x) = \frac{2}{3} x - 1 \)[/tex] is a linear function. Linear functions produce straight lines when graphed and have the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
Here, [tex]\( m = \frac{2}{3} \)[/tex] and [tex]\( b = -1 \)[/tex].
2. Evaluating at the Boundary Conditions:
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex]:
[tex]\[ g(x) = \frac{2}{3} x - 1 \Rightarrow \text{As } x \to -\infty, \; g(x) \to -\infty \][/tex]
This means that as [tex]\( x \)[/tex] becomes arbitrarily large in the negative direction, [tex]\( g(x) \)[/tex] becomes arbitrarily large in the negative direction as well.
- At the upper limit of the domain, [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = \frac{2}{3} \cdot 3 - 1 = 2 - 1 = 1 \][/tex]
This means that when [tex]\( x \)[/tex] reaches its maximum value of 3 within the domain, [tex]\( g(x) \)[/tex] reaches its maximum value of 1.
3. Determining the Range:
Given the behavior of [tex]\( g(x) \)[/tex] at the boundaries:
- As [tex]\( x \)[/tex] decreases without bound, [tex]\( g(x) \)[/tex] also decreases without bound, meaning [tex]\( g(x) \to -\infty \)[/tex].
- When [tex]\( x \)[/tex] is at its maximum value of 3, [tex]\( g(x) \)[/tex] reaches exactly 1.
From these observations, the range of [tex]\( g(x) \)[/tex] includes all values starting from [tex]\(-\infty\)[/tex] up to and including 1, because [tex]\( g(x) \)[/tex] can take any value in this interval as [tex]\( x \)[/tex] varies over its domain.
Therefore, the range of [tex]\( g(x) \)[/tex] given the domain [tex]\( (-\infty, 3] \)[/tex] is:
[tex]\[ \boxed{(-\infty, 1]} \][/tex]
1. Understanding the Linear Function:
The function [tex]\( g(x) = \frac{2}{3} x - 1 \)[/tex] is a linear function. Linear functions produce straight lines when graphed and have the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
Here, [tex]\( m = \frac{2}{3} \)[/tex] and [tex]\( b = -1 \)[/tex].
2. Evaluating at the Boundary Conditions:
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex]:
[tex]\[ g(x) = \frac{2}{3} x - 1 \Rightarrow \text{As } x \to -\infty, \; g(x) \to -\infty \][/tex]
This means that as [tex]\( x \)[/tex] becomes arbitrarily large in the negative direction, [tex]\( g(x) \)[/tex] becomes arbitrarily large in the negative direction as well.
- At the upper limit of the domain, [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = \frac{2}{3} \cdot 3 - 1 = 2 - 1 = 1 \][/tex]
This means that when [tex]\( x \)[/tex] reaches its maximum value of 3 within the domain, [tex]\( g(x) \)[/tex] reaches its maximum value of 1.
3. Determining the Range:
Given the behavior of [tex]\( g(x) \)[/tex] at the boundaries:
- As [tex]\( x \)[/tex] decreases without bound, [tex]\( g(x) \)[/tex] also decreases without bound, meaning [tex]\( g(x) \to -\infty \)[/tex].
- When [tex]\( x \)[/tex] is at its maximum value of 3, [tex]\( g(x) \)[/tex] reaches exactly 1.
From these observations, the range of [tex]\( g(x) \)[/tex] includes all values starting from [tex]\(-\infty\)[/tex] up to and including 1, because [tex]\( g(x) \)[/tex] can take any value in this interval as [tex]\( x \)[/tex] varies over its domain.
Therefore, the range of [tex]\( g(x) \)[/tex] given the domain [tex]\( (-\infty, 3] \)[/tex] is:
[tex]\[ \boxed{(-\infty, 1]} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.