Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's find the derivative [tex]\( f'(x) \)[/tex] and the value of the derivative at [tex]\( x = 3 \)[/tex] for the function [tex]\( f(x) = \frac{3x^2 \tan x}{\sec x} \)[/tex].
### Step-by-Step Solution
1. Simplify the Function [tex]\( f(x) \)[/tex]:
We start by simplifying the expression. Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], hence:
[tex]\[ f(x) = \frac{3x^2 \tan x}{\sec x} = 3x^2 \tan(x) \cos(x) \][/tex]
Here, we used the identity [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex] to simplify [tex]\( \frac{\tan(x)}{\sec(x)} \)[/tex] to [tex]\( \tan(x) \cos(x) \)[/tex].
2. Rewrite [tex]\( f(x) \)[/tex] Using Trigonometric Identities:
Recall that [tex]\( \tan(x) = \frac{\sin(x)}{\cos(x)} \)[/tex]. Therefore,
[tex]\[ f(x) = 3x^2 \left( \frac{\sin(x)}{\cos(x)} \right) \cos(x) = 3x^2 \sin(x) \][/tex]
3. Differentiate [tex]\( f(x) \)[/tex] with Respect to [tex]\( x \)[/tex]:
To find [tex]\( f'(x) \)[/tex], we need to use the product rule. The product rule states that if [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are functions of [tex]\( x \)[/tex], then:
[tex]\[ \frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \][/tex]
Let [tex]\( u(x) = 3x^2 \)[/tex] and [tex]\( v(x) = \sin(x) \)[/tex]. Then:
[tex]\[ u'(x) = \frac{d}{dx}(3x^2) = 6x \][/tex]
and
[tex]\[ v'(x) = \frac{d}{dx}(\sin(x)) = \cos(x) \][/tex]
Applying the product rule:
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
4. Substitute [tex]\( x = 3 \)[/tex] into [tex]\( f'(x) \)[/tex]:
To find [tex]\( f'(3) \)[/tex], substitute [tex]\( x = 3 \)[/tex] into the derivative:
[tex]\[ f'(3) = 6 \cdot 3 \cdot \sin(3) + 3 \cdot 3^2 \cdot \cos(3) \][/tex]
Simplify the expression:
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
### Final Answers
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
These are the first derivative of [tex]\( f(x) \)[/tex] and its value at [tex]\( x = 3 \)[/tex] respectively.
### Step-by-Step Solution
1. Simplify the Function [tex]\( f(x) \)[/tex]:
We start by simplifying the expression. Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], hence:
[tex]\[ f(x) = \frac{3x^2 \tan x}{\sec x} = 3x^2 \tan(x) \cos(x) \][/tex]
Here, we used the identity [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex] to simplify [tex]\( \frac{\tan(x)}{\sec(x)} \)[/tex] to [tex]\( \tan(x) \cos(x) \)[/tex].
2. Rewrite [tex]\( f(x) \)[/tex] Using Trigonometric Identities:
Recall that [tex]\( \tan(x) = \frac{\sin(x)}{\cos(x)} \)[/tex]. Therefore,
[tex]\[ f(x) = 3x^2 \left( \frac{\sin(x)}{\cos(x)} \right) \cos(x) = 3x^2 \sin(x) \][/tex]
3. Differentiate [tex]\( f(x) \)[/tex] with Respect to [tex]\( x \)[/tex]:
To find [tex]\( f'(x) \)[/tex], we need to use the product rule. The product rule states that if [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are functions of [tex]\( x \)[/tex], then:
[tex]\[ \frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \][/tex]
Let [tex]\( u(x) = 3x^2 \)[/tex] and [tex]\( v(x) = \sin(x) \)[/tex]. Then:
[tex]\[ u'(x) = \frac{d}{dx}(3x^2) = 6x \][/tex]
and
[tex]\[ v'(x) = \frac{d}{dx}(\sin(x)) = \cos(x) \][/tex]
Applying the product rule:
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
4. Substitute [tex]\( x = 3 \)[/tex] into [tex]\( f'(x) \)[/tex]:
To find [tex]\( f'(3) \)[/tex], substitute [tex]\( x = 3 \)[/tex] into the derivative:
[tex]\[ f'(3) = 6 \cdot 3 \cdot \sin(3) + 3 \cdot 3^2 \cdot \cos(3) \][/tex]
Simplify the expression:
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
### Final Answers
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
These are the first derivative of [tex]\( f(x) \)[/tex] and its value at [tex]\( x = 3 \)[/tex] respectively.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.