Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's find the derivative [tex]\( f'(x) \)[/tex] and the value of the derivative at [tex]\( x = 3 \)[/tex] for the function [tex]\( f(x) = \frac{3x^2 \tan x}{\sec x} \)[/tex].
### Step-by-Step Solution
1. Simplify the Function [tex]\( f(x) \)[/tex]:
We start by simplifying the expression. Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], hence:
[tex]\[ f(x) = \frac{3x^2 \tan x}{\sec x} = 3x^2 \tan(x) \cos(x) \][/tex]
Here, we used the identity [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex] to simplify [tex]\( \frac{\tan(x)}{\sec(x)} \)[/tex] to [tex]\( \tan(x) \cos(x) \)[/tex].
2. Rewrite [tex]\( f(x) \)[/tex] Using Trigonometric Identities:
Recall that [tex]\( \tan(x) = \frac{\sin(x)}{\cos(x)} \)[/tex]. Therefore,
[tex]\[ f(x) = 3x^2 \left( \frac{\sin(x)}{\cos(x)} \right) \cos(x) = 3x^2 \sin(x) \][/tex]
3. Differentiate [tex]\( f(x) \)[/tex] with Respect to [tex]\( x \)[/tex]:
To find [tex]\( f'(x) \)[/tex], we need to use the product rule. The product rule states that if [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are functions of [tex]\( x \)[/tex], then:
[tex]\[ \frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \][/tex]
Let [tex]\( u(x) = 3x^2 \)[/tex] and [tex]\( v(x) = \sin(x) \)[/tex]. Then:
[tex]\[ u'(x) = \frac{d}{dx}(3x^2) = 6x \][/tex]
and
[tex]\[ v'(x) = \frac{d}{dx}(\sin(x)) = \cos(x) \][/tex]
Applying the product rule:
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
4. Substitute [tex]\( x = 3 \)[/tex] into [tex]\( f'(x) \)[/tex]:
To find [tex]\( f'(3) \)[/tex], substitute [tex]\( x = 3 \)[/tex] into the derivative:
[tex]\[ f'(3) = 6 \cdot 3 \cdot \sin(3) + 3 \cdot 3^2 \cdot \cos(3) \][/tex]
Simplify the expression:
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
### Final Answers
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
These are the first derivative of [tex]\( f(x) \)[/tex] and its value at [tex]\( x = 3 \)[/tex] respectively.
### Step-by-Step Solution
1. Simplify the Function [tex]\( f(x) \)[/tex]:
We start by simplifying the expression. Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], hence:
[tex]\[ f(x) = \frac{3x^2 \tan x}{\sec x} = 3x^2 \tan(x) \cos(x) \][/tex]
Here, we used the identity [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex] to simplify [tex]\( \frac{\tan(x)}{\sec(x)} \)[/tex] to [tex]\( \tan(x) \cos(x) \)[/tex].
2. Rewrite [tex]\( f(x) \)[/tex] Using Trigonometric Identities:
Recall that [tex]\( \tan(x) = \frac{\sin(x)}{\cos(x)} \)[/tex]. Therefore,
[tex]\[ f(x) = 3x^2 \left( \frac{\sin(x)}{\cos(x)} \right) \cos(x) = 3x^2 \sin(x) \][/tex]
3. Differentiate [tex]\( f(x) \)[/tex] with Respect to [tex]\( x \)[/tex]:
To find [tex]\( f'(x) \)[/tex], we need to use the product rule. The product rule states that if [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are functions of [tex]\( x \)[/tex], then:
[tex]\[ \frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \][/tex]
Let [tex]\( u(x) = 3x^2 \)[/tex] and [tex]\( v(x) = \sin(x) \)[/tex]. Then:
[tex]\[ u'(x) = \frac{d}{dx}(3x^2) = 6x \][/tex]
and
[tex]\[ v'(x) = \frac{d}{dx}(\sin(x)) = \cos(x) \][/tex]
Applying the product rule:
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
4. Substitute [tex]\( x = 3 \)[/tex] into [tex]\( f'(x) \)[/tex]:
To find [tex]\( f'(3) \)[/tex], substitute [tex]\( x = 3 \)[/tex] into the derivative:
[tex]\[ f'(3) = 6 \cdot 3 \cdot \sin(3) + 3 \cdot 3^2 \cdot \cos(3) \][/tex]
Simplify the expression:
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
### Final Answers
[tex]\[ f'(x) = 6x \sin(x) + 3x^2 \cos(x) \][/tex]
[tex]\[ f'(3) = 18 \sin(3) + 27 \cos(3) \][/tex]
These are the first derivative of [tex]\( f(x) \)[/tex] and its value at [tex]\( x = 3 \)[/tex] respectively.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.