Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Great question! Let's analyze the polynomial function step-by-step to identify which one fits the given criteria:
We need a polynomial function that has:
1. A leading coefficient of 1.
2. Roots at [tex]\( x = -2 \)[/tex] and [tex]\( x = 7 \)[/tex] with multiplicity 1.
3. A root at [tex]\( x = 5 \)[/tex] with multiplicity 2.
### Breakdown
1. Leading Coefficient of 1: This means the polynomial should not have any leading constants other than 1.
2. Root at [tex]\( x = -2 \)[/tex] with multiplicity 1: This means [tex]\( (x + 2) \)[/tex] should be a factor of the polynomial.
3. Root at [tex]\( x = 7 \)[/tex] with multiplicity 1: This means [tex]\( (x - 7) \)[/tex] should be a factor of the polynomial.
4. Root at [tex]\( x = 5 \)[/tex] with multiplicity 2: This means [tex]\( (x - 5) \)[/tex] should be a factor of the polynomial twice, i.e., [tex]\( (x - 5)^2 \)[/tex].
### Forming the Polynomial
Combining these factors, the polynomial should look like:
[tex]\[ f(x) = (x + 2)(x - 7)(x - 5)(x - 5) \][/tex]
### Evaluating the Options:
Let's evaluate the provided options:
1. Option A: [tex]\( f(x) = 2(x + 7)(x + 5)(x - 2) \)[/tex]
- This option has a leading coefficient of 2, not 1. It doesn’t match.
2. Option B: [tex]\( f(x) = 2(x - 7)(x - 5)(x + 2) \)[/tex]
- This option has a leading coefficient of 2, not 1. It doesn’t match.
3. Option C: [tex]\( f(x) = (x + 7)(x + 5)(x + 5)(x - 2) \)[/tex]
- This option does not have the correct factors. Particularly, it does not have [tex]\( (x - 7) \)[/tex] and has extra positive roots.
4. Option D: [tex]\( f(x) = (x - 7)(x - 5)(x - 5)(x + 2) \)[/tex]
- This option indeed has all the required factors: [tex]\( (x + 2) \)[/tex], [tex]\( (x - 7) \)[/tex], [tex]\( (x - 5)^2 \)[/tex].
- Leading coefficient is 1.
Given all these considerations, the correct polynomial function that meets all the criteria is:
[tex]\[ f(x) = (x - 7)(x - 5)(x - 5)(x + 2) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
We need a polynomial function that has:
1. A leading coefficient of 1.
2. Roots at [tex]\( x = -2 \)[/tex] and [tex]\( x = 7 \)[/tex] with multiplicity 1.
3. A root at [tex]\( x = 5 \)[/tex] with multiplicity 2.
### Breakdown
1. Leading Coefficient of 1: This means the polynomial should not have any leading constants other than 1.
2. Root at [tex]\( x = -2 \)[/tex] with multiplicity 1: This means [tex]\( (x + 2) \)[/tex] should be a factor of the polynomial.
3. Root at [tex]\( x = 7 \)[/tex] with multiplicity 1: This means [tex]\( (x - 7) \)[/tex] should be a factor of the polynomial.
4. Root at [tex]\( x = 5 \)[/tex] with multiplicity 2: This means [tex]\( (x - 5) \)[/tex] should be a factor of the polynomial twice, i.e., [tex]\( (x - 5)^2 \)[/tex].
### Forming the Polynomial
Combining these factors, the polynomial should look like:
[tex]\[ f(x) = (x + 2)(x - 7)(x - 5)(x - 5) \][/tex]
### Evaluating the Options:
Let's evaluate the provided options:
1. Option A: [tex]\( f(x) = 2(x + 7)(x + 5)(x - 2) \)[/tex]
- This option has a leading coefficient of 2, not 1. It doesn’t match.
2. Option B: [tex]\( f(x) = 2(x - 7)(x - 5)(x + 2) \)[/tex]
- This option has a leading coefficient of 2, not 1. It doesn’t match.
3. Option C: [tex]\( f(x) = (x + 7)(x + 5)(x + 5)(x - 2) \)[/tex]
- This option does not have the correct factors. Particularly, it does not have [tex]\( (x - 7) \)[/tex] and has extra positive roots.
4. Option D: [tex]\( f(x) = (x - 7)(x - 5)(x - 5)(x + 2) \)[/tex]
- This option indeed has all the required factors: [tex]\( (x + 2) \)[/tex], [tex]\( (x - 7) \)[/tex], [tex]\( (x - 5)^2 \)[/tex].
- Leading coefficient is 1.
Given all these considerations, the correct polynomial function that meets all the criteria is:
[tex]\[ f(x) = (x - 7)(x - 5)(x - 5)(x + 2) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.