Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the first derivative of the function [tex]\( g(x) = 4 e^x \cot(x^2) \)[/tex], we will use the product rule and the chain rule because the function comprises the product of two functions: [tex]\(4 e^x\)[/tex] and [tex]\(\cot(x^2)\)[/tex].
The product rule states that if [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex] are functions of [tex]\(x\)[/tex], then the derivative of their product is given by:
[tex]\[ (uv)' = u'v + uv' \][/tex]
In this case, let:
[tex]\[ u(x) = 4 e^x \][/tex]
[tex]\[ v(x) = \cot(x^2) \][/tex]
We will first find the derivatives of [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex] separately.
1. Derivative of [tex]\(u(x) = 4 e^x\)[/tex]:
[tex]\[ u'(x) = 4 e^x \][/tex]
2. Derivative of [tex]\(v(x) = \cot(x^2)\)[/tex]:
To find the derivative of [tex]\(v(x)\)[/tex], we need to use the chain rule. The chain rule states that if a function [tex]\(v(x)\)[/tex] is the composition of two functions [tex]\(f(g(x))\)[/tex], then the derivative is given by:
[tex]\[ \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) \][/tex]
Let:
[tex]\[ w = x^2 \][/tex]
[tex]\[ v(x) = \cot(w) \][/tex]
Then,
[tex]\[ v'(w) = -\csc^2(w) \][/tex]
[tex]\[ w'(x) = 2x \][/tex]
Using the chain rule:
[tex]\[ v'(x) = v'(w) \cdot w'(x) = -\csc^2(x^2) \cdot 2x \][/tex]
[tex]\[ v'(x) = -2x \csc^2(x^2) \][/tex]
Now we apply the product rule:
[tex]\[ g'(x) = u'(x)v(x) + u(x)v'(x) \][/tex]
[tex]\[ g'(x) = (4 e^x)(\cot(x^2)) + (4 e^x)(-2x \csc^2(x^2)) \][/tex]
[tex]\[ g'(x) = 4 e^x \cot(x^2) - 8x e^x \csc^2(x^2) \][/tex]
Combining these terms, we get:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - 2x \csc^2(x^2) \right) e^x \][/tex]
Therefore, the first derivative of [tex]\( g(x) \)[/tex] is:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - \frac{2x}{\sin^2(x^2)} \right) e^x \][/tex]
Or, equivalently:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - 2x \csc^2(x^2) \right) e^x \][/tex]
Thus, the simplified form of the first derivative is:
[tex]\[ g'(x) = 4 \left( -2x \csc^2(x^2) + \cot(x^2) \right) e^x \][/tex]
[tex]\[ g'(x) = 4 \left( -2x \left(\frac{1}{\sin(x^2)}\right)^2 + \cot(x^2) \right) e^x \][/tex]
Therefore, the detailed step-by-step solution for the first derivative of [tex]\( g(x) \)[/tex] is:
[tex]\[ g'(x) = 4 \left(-\frac{2x}{\sin^2(x^2)} + \cot(x^2) \right) e^x \][/tex]
The product rule states that if [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex] are functions of [tex]\(x\)[/tex], then the derivative of their product is given by:
[tex]\[ (uv)' = u'v + uv' \][/tex]
In this case, let:
[tex]\[ u(x) = 4 e^x \][/tex]
[tex]\[ v(x) = \cot(x^2) \][/tex]
We will first find the derivatives of [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex] separately.
1. Derivative of [tex]\(u(x) = 4 e^x\)[/tex]:
[tex]\[ u'(x) = 4 e^x \][/tex]
2. Derivative of [tex]\(v(x) = \cot(x^2)\)[/tex]:
To find the derivative of [tex]\(v(x)\)[/tex], we need to use the chain rule. The chain rule states that if a function [tex]\(v(x)\)[/tex] is the composition of two functions [tex]\(f(g(x))\)[/tex], then the derivative is given by:
[tex]\[ \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) \][/tex]
Let:
[tex]\[ w = x^2 \][/tex]
[tex]\[ v(x) = \cot(w) \][/tex]
Then,
[tex]\[ v'(w) = -\csc^2(w) \][/tex]
[tex]\[ w'(x) = 2x \][/tex]
Using the chain rule:
[tex]\[ v'(x) = v'(w) \cdot w'(x) = -\csc^2(x^2) \cdot 2x \][/tex]
[tex]\[ v'(x) = -2x \csc^2(x^2) \][/tex]
Now we apply the product rule:
[tex]\[ g'(x) = u'(x)v(x) + u(x)v'(x) \][/tex]
[tex]\[ g'(x) = (4 e^x)(\cot(x^2)) + (4 e^x)(-2x \csc^2(x^2)) \][/tex]
[tex]\[ g'(x) = 4 e^x \cot(x^2) - 8x e^x \csc^2(x^2) \][/tex]
Combining these terms, we get:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - 2x \csc^2(x^2) \right) e^x \][/tex]
Therefore, the first derivative of [tex]\( g(x) \)[/tex] is:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - \frac{2x}{\sin^2(x^2)} \right) e^x \][/tex]
Or, equivalently:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - 2x \csc^2(x^2) \right) e^x \][/tex]
Thus, the simplified form of the first derivative is:
[tex]\[ g'(x) = 4 \left( -2x \csc^2(x^2) + \cot(x^2) \right) e^x \][/tex]
[tex]\[ g'(x) = 4 \left( -2x \left(\frac{1}{\sin(x^2)}\right)^2 + \cot(x^2) \right) e^x \][/tex]
Therefore, the detailed step-by-step solution for the first derivative of [tex]\( g(x) \)[/tex] is:
[tex]\[ g'(x) = 4 \left(-\frac{2x}{\sin^2(x^2)} + \cot(x^2) \right) e^x \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.