Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Find the first derivative of [tex]\( g(x) = 4 e^x \cot \left(x^2\right) \)[/tex].

[tex]\[ g^{\prime}(x) = \][/tex]


Sagot :

To find the first derivative of the function [tex]\( g(x) = 4 e^x \cot(x^2) \)[/tex], we will use the product rule and the chain rule because the function comprises the product of two functions: [tex]\(4 e^x\)[/tex] and [tex]\(\cot(x^2)\)[/tex].

The product rule states that if [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex] are functions of [tex]\(x\)[/tex], then the derivative of their product is given by:
[tex]\[ (uv)' = u'v + uv' \][/tex]

In this case, let:
[tex]\[ u(x) = 4 e^x \][/tex]
[tex]\[ v(x) = \cot(x^2) \][/tex]

We will first find the derivatives of [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex] separately.

1. Derivative of [tex]\(u(x) = 4 e^x\)[/tex]:
[tex]\[ u'(x) = 4 e^x \][/tex]

2. Derivative of [tex]\(v(x) = \cot(x^2)\)[/tex]:
To find the derivative of [tex]\(v(x)\)[/tex], we need to use the chain rule. The chain rule states that if a function [tex]\(v(x)\)[/tex] is the composition of two functions [tex]\(f(g(x))\)[/tex], then the derivative is given by:
[tex]\[ \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) \][/tex]

Let:
[tex]\[ w = x^2 \][/tex]
[tex]\[ v(x) = \cot(w) \][/tex]
Then,
[tex]\[ v'(w) = -\csc^2(w) \][/tex]
[tex]\[ w'(x) = 2x \][/tex]

Using the chain rule:
[tex]\[ v'(x) = v'(w) \cdot w'(x) = -\csc^2(x^2) \cdot 2x \][/tex]
[tex]\[ v'(x) = -2x \csc^2(x^2) \][/tex]

Now we apply the product rule:
[tex]\[ g'(x) = u'(x)v(x) + u(x)v'(x) \][/tex]
[tex]\[ g'(x) = (4 e^x)(\cot(x^2)) + (4 e^x)(-2x \csc^2(x^2)) \][/tex]
[tex]\[ g'(x) = 4 e^x \cot(x^2) - 8x e^x \csc^2(x^2) \][/tex]

Combining these terms, we get:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - 2x \csc^2(x^2) \right) e^x \][/tex]

Therefore, the first derivative of [tex]\( g(x) \)[/tex] is:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - \frac{2x}{\sin^2(x^2)} \right) e^x \][/tex]
Or, equivalently:
[tex]\[ g'(x) = 4 \left( \cot(x^2) - 2x \csc^2(x^2) \right) e^x \][/tex]

Thus, the simplified form of the first derivative is:
[tex]\[ g'(x) = 4 \left( -2x \csc^2(x^2) + \cot(x^2) \right) e^x \][/tex]
[tex]\[ g'(x) = 4 \left( -2x \left(\frac{1}{\sin(x^2)}\right)^2 + \cot(x^2) \right) e^x \][/tex]

Therefore, the detailed step-by-step solution for the first derivative of [tex]\( g(x) \)[/tex] is:
[tex]\[ g'(x) = 4 \left(-\frac{2x}{\sin^2(x^2)} + \cot(x^2) \right) e^x \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.