Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine whether the series [tex]\(\sum_{n=1}^{\infty} n^3\left(2^{-3 \ln (n)}\right)\)[/tex] converges or diverges, we can simplify the general term of the series and analyze its behavior.
First, let's simplify the expression inside the summation:
[tex]\[ n^3\left(2^{-3 \ln (n)}\right) \][/tex]
We know that for any positive [tex]\(a\)[/tex],
[tex]\[ a^{-\ln(n)} = \frac{1}{n^{\ln(a)}} \][/tex]
Applying this to our series where [tex]\(a = 2^3\)[/tex]:
[tex]\[ 2^{-3 \ln (n)} = \left(2^{\ln (n)} \right)^{-3} = \left( n^{\ln (2)}\right)^{-3} = \frac{1}{n^{3 \ln (2)}} \][/tex]
Thus, the general term of our series can be rewritten as:
[tex]\[ n^3 \cdot \frac{1}{n^{3 \ln (2)}} = \frac{n^3}{n^{3 \ln (2)}} \][/tex]
We can simplify the exponent in the denominator:
[tex]\[ \frac{n^3}{n^{3 \ln (2)}} = n^{3 - 3 \ln (2)} \][/tex]
Denoting [tex]\(\alpha = 3 - 3 \ln(2)\)[/tex], our series becomes:
[tex]\[ \sum_{n=1}^{\infty} n^{\alpha} \][/tex]
To determine the convergence of this series, we analyze the value of [tex]\(\alpha\)[/tex]. The p-test for series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex] tells us that the series converges if and only if [tex]\(p > 1\)[/tex].
In our case, [tex]\(\alpha = 3 - 3 \ln(2)\)[/tex]. Calculating this value:
[tex]\[ 3 - 3 \ln(2) \approx 3 - 3(0.693) \approx 3 - 2.079 \approx 0.921 \][/tex]
Since [tex]\(\alpha \approx 0.921\)[/tex], which is greater than -1 but less than 1, the series does not meet the necessary condition for convergence (i.e., [tex]\(\alpha \leq -1\)[/tex] for the series to converge).
Therefore, the series diverges.
The correct answer is:
The series diverges.
First, let's simplify the expression inside the summation:
[tex]\[ n^3\left(2^{-3 \ln (n)}\right) \][/tex]
We know that for any positive [tex]\(a\)[/tex],
[tex]\[ a^{-\ln(n)} = \frac{1}{n^{\ln(a)}} \][/tex]
Applying this to our series where [tex]\(a = 2^3\)[/tex]:
[tex]\[ 2^{-3 \ln (n)} = \left(2^{\ln (n)} \right)^{-3} = \left( n^{\ln (2)}\right)^{-3} = \frac{1}{n^{3 \ln (2)}} \][/tex]
Thus, the general term of our series can be rewritten as:
[tex]\[ n^3 \cdot \frac{1}{n^{3 \ln (2)}} = \frac{n^3}{n^{3 \ln (2)}} \][/tex]
We can simplify the exponent in the denominator:
[tex]\[ \frac{n^3}{n^{3 \ln (2)}} = n^{3 - 3 \ln (2)} \][/tex]
Denoting [tex]\(\alpha = 3 - 3 \ln(2)\)[/tex], our series becomes:
[tex]\[ \sum_{n=1}^{\infty} n^{\alpha} \][/tex]
To determine the convergence of this series, we analyze the value of [tex]\(\alpha\)[/tex]. The p-test for series [tex]\(\sum_{n=1}^{\infty} \frac{1}{n^p}\)[/tex] tells us that the series converges if and only if [tex]\(p > 1\)[/tex].
In our case, [tex]\(\alpha = 3 - 3 \ln(2)\)[/tex]. Calculating this value:
[tex]\[ 3 - 3 \ln(2) \approx 3 - 3(0.693) \approx 3 - 2.079 \approx 0.921 \][/tex]
Since [tex]\(\alpha \approx 0.921\)[/tex], which is greater than -1 but less than 1, the series does not meet the necessary condition for convergence (i.e., [tex]\(\alpha \leq -1\)[/tex] for the series to converge).
Therefore, the series diverges.
The correct answer is:
The series diverges.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.