At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether the series [tex]\(\sum_{n=1}^{\infty} \frac{7^n + 9}{5^n}\)[/tex] converges or diverges, we will use the limit comparison test with the geometric series [tex]\(\sum_{n=1}^{\infty} \frac{7^n}{5^n}\)[/tex].
Here are the steps:
1. Consider the given series:
[tex]\[ \sum_{n=1}^{\infty} \frac{7^n + 9}{5^n} \][/tex]
2. Choose a comparison series:
We will compare this series with the geometric series
[tex]\[ \sum_{n=1}^{\infty} \frac{7^n}{5^n} \][/tex]
3. Define the terms of the series:
Let [tex]\(a_n = \frac{7^n + 9}{5^n}\)[/tex] for the given series and [tex]\(b_n = \frac{7^n}{5^n}\)[/tex] for the comparison series.
4. Compute the limit ratio:
To apply the limit comparison test, calculate:
[tex]\[ \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{7^n + 9}{5^n}}{\frac{7^n}{5^n}} = \lim_{n \to \infty} \frac{7^n + 9}{7^n} = \lim_{n \to \infty} \left( 1 + \frac{9}{7^n} \right) \][/tex]
5. Evaluate the limit:
Since [tex]\(\frac{9}{7^n}\)[/tex] approaches 0 as [tex]\(n\)[/tex] approaches infinity,
[tex]\[ \lim_{n \to \infty} \left( 1 + \frac{9}{7^n} \right) = 1 \][/tex]
6. Apply the limit comparison test:
The limit obtained is a positive, finite number [tex]\((=1)\)[/tex]. According to the limit comparison test, if [tex]\( \lim_{n \to \infty} \frac{a_n}{b_n} \)[/tex] is a positive finite number, then both series [tex]\(\sum a_n\)[/tex] and [tex]\(\sum b_n\)[/tex] either both converge or both diverge.
7. Determine the behavior of the comparison series:
The comparison series [tex]\(\sum_{n=1}^{\infty} \frac{7^n}{5^n}\)[/tex] is a geometric series with the common ratio [tex]\(\frac{7}{5}\)[/tex]. Since [tex]\(\left| \frac{7}{5} \right| > 1\)[/tex], the geometric series diverges.
8. Conclude the behavior of the given series:
Since the comparison series diverges and the limit comparison test provides a positive, finite limit, the given series
[tex]\[ \sum_{n=1}^{\infty} \frac{7^n + 9}{5^n} \][/tex]
also diverges.
Therefore, the correct answer is:
The series diverges.
Here are the steps:
1. Consider the given series:
[tex]\[ \sum_{n=1}^{\infty} \frac{7^n + 9}{5^n} \][/tex]
2. Choose a comparison series:
We will compare this series with the geometric series
[tex]\[ \sum_{n=1}^{\infty} \frac{7^n}{5^n} \][/tex]
3. Define the terms of the series:
Let [tex]\(a_n = \frac{7^n + 9}{5^n}\)[/tex] for the given series and [tex]\(b_n = \frac{7^n}{5^n}\)[/tex] for the comparison series.
4. Compute the limit ratio:
To apply the limit comparison test, calculate:
[tex]\[ \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{7^n + 9}{5^n}}{\frac{7^n}{5^n}} = \lim_{n \to \infty} \frac{7^n + 9}{7^n} = \lim_{n \to \infty} \left( 1 + \frac{9}{7^n} \right) \][/tex]
5. Evaluate the limit:
Since [tex]\(\frac{9}{7^n}\)[/tex] approaches 0 as [tex]\(n\)[/tex] approaches infinity,
[tex]\[ \lim_{n \to \infty} \left( 1 + \frac{9}{7^n} \right) = 1 \][/tex]
6. Apply the limit comparison test:
The limit obtained is a positive, finite number [tex]\((=1)\)[/tex]. According to the limit comparison test, if [tex]\( \lim_{n \to \infty} \frac{a_n}{b_n} \)[/tex] is a positive finite number, then both series [tex]\(\sum a_n\)[/tex] and [tex]\(\sum b_n\)[/tex] either both converge or both diverge.
7. Determine the behavior of the comparison series:
The comparison series [tex]\(\sum_{n=1}^{\infty} \frac{7^n}{5^n}\)[/tex] is a geometric series with the common ratio [tex]\(\frac{7}{5}\)[/tex]. Since [tex]\(\left| \frac{7}{5} \right| > 1\)[/tex], the geometric series diverges.
8. Conclude the behavior of the given series:
Since the comparison series diverges and the limit comparison test provides a positive, finite limit, the given series
[tex]\[ \sum_{n=1}^{\infty} \frac{7^n + 9}{5^n} \][/tex]
also diverges.
Therefore, the correct answer is:
The series diverges.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.