Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the value of [tex]\( f(-1/7) \)[/tex] for the function [tex]\( f(x) = \frac{4x - 3}{1 + 7x} \)[/tex], we need to follow these steps.
1. Substitute [tex]\( x \)[/tex] with [tex]\(-\frac{1}{7}\)[/tex] in the function [tex]\( f(x) \)[/tex].
[tex]\[ f\left(-\frac{1}{7}\right) = \frac{4\left(-\frac{1}{7}\right) - 3}{1 + 7\left(-\frac{1}{7}\right)} \][/tex]
2. Simplify the numerator:
[tex]\[ 4\left(-\frac{1}{7}\right) - 3 = -\frac{4}{7} - 3 \][/tex]
Convert -3 into a fraction with a common denominator:
[tex]\[ -\frac{4}{7} - 3 = -\frac{4}{7} - \frac{21}{7} = -\frac{25}{7} \][/tex]
3. Simplify the denominator:
[tex]\[ 1 + 7\left(-\frac{1}{7}\right) = 1 - 1 = 0 \][/tex]
4. Compute the value of the function:
[tex]\[ f\left(-\frac{1}{7}\right) = \frac{-\frac{25}{7}}{0} \][/tex]
Since the denominator is zero, the value is undefined, which means it approaches infinity.
Therefore, the correct answer is:
[tex]\[ \boxed{\infty} \][/tex]
1. Substitute [tex]\( x \)[/tex] with [tex]\(-\frac{1}{7}\)[/tex] in the function [tex]\( f(x) \)[/tex].
[tex]\[ f\left(-\frac{1}{7}\right) = \frac{4\left(-\frac{1}{7}\right) - 3}{1 + 7\left(-\frac{1}{7}\right)} \][/tex]
2. Simplify the numerator:
[tex]\[ 4\left(-\frac{1}{7}\right) - 3 = -\frac{4}{7} - 3 \][/tex]
Convert -3 into a fraction with a common denominator:
[tex]\[ -\frac{4}{7} - 3 = -\frac{4}{7} - \frac{21}{7} = -\frac{25}{7} \][/tex]
3. Simplify the denominator:
[tex]\[ 1 + 7\left(-\frac{1}{7}\right) = 1 - 1 = 0 \][/tex]
4. Compute the value of the function:
[tex]\[ f\left(-\frac{1}{7}\right) = \frac{-\frac{25}{7}}{0} \][/tex]
Since the denominator is zero, the value is undefined, which means it approaches infinity.
Therefore, the correct answer is:
[tex]\[ \boxed{\infty} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.