Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To simplify the expression [tex]\(\frac{\sqrt{3}}{3 - 2 \sqrt{x}}\)[/tex], follow these steps:
1. Identify the Conjugate:
The given expression has a radical term in the denominator. To simplify, we'll multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of [tex]\(3 - 2 \sqrt{x}\)[/tex] is [tex]\(3 + 2 \sqrt{x}\)[/tex].
2. Multiply the Numerator and Denominator by the Conjugate:
[tex]\[ \frac{\sqrt{3}}{3 - 2 \sqrt{x}} \times \frac{3 + 2 \sqrt{x}}{3 + 2 \sqrt{x}} = \frac{\sqrt{3} (3 + 2 \sqrt{x})}{(3 - 2 \sqrt{x})(3 + 2 \sqrt{x})} \][/tex]
3. Simplify the Denominator:
The denominator is a difference of squares:
[tex]\[ (3 - 2 \sqrt{x})(3 + 2 \sqrt{x}) = 3^2 - (2 \sqrt{x})^2 = 9 - 4x \][/tex]
4. Expand the Numerator:
Distribute [tex]\(\sqrt{3}\)[/tex] across the terms in the numerator:
[tex]\[ \sqrt{3} (3 + 2 \sqrt{x}) = 3 \sqrt{3} + 2 \sqrt{3} \sqrt{x} \][/tex]
However, we can represent the original denominator [tex]\(3 - 2 \sqrt{x}\)[/tex] in a negative form:
[tex]\[ 3 - 2 \sqrt{x} = -(2 \sqrt{x} - 3) \][/tex]
Thus, rewriting the expression:
[tex]\[ \frac{\sqrt{3}}{3 - 2 \sqrt{x}} = \frac{\sqrt{3}}{-(2 \sqrt{x} - 3)} = -\frac{\sqrt{3}}{2 \sqrt{x} - 3} \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ -\frac{\sqrt{3}}{2 \sqrt{x} - 3} \][/tex]
1. Identify the Conjugate:
The given expression has a radical term in the denominator. To simplify, we'll multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of [tex]\(3 - 2 \sqrt{x}\)[/tex] is [tex]\(3 + 2 \sqrt{x}\)[/tex].
2. Multiply the Numerator and Denominator by the Conjugate:
[tex]\[ \frac{\sqrt{3}}{3 - 2 \sqrt{x}} \times \frac{3 + 2 \sqrt{x}}{3 + 2 \sqrt{x}} = \frac{\sqrt{3} (3 + 2 \sqrt{x})}{(3 - 2 \sqrt{x})(3 + 2 \sqrt{x})} \][/tex]
3. Simplify the Denominator:
The denominator is a difference of squares:
[tex]\[ (3 - 2 \sqrt{x})(3 + 2 \sqrt{x}) = 3^2 - (2 \sqrt{x})^2 = 9 - 4x \][/tex]
4. Expand the Numerator:
Distribute [tex]\(\sqrt{3}\)[/tex] across the terms in the numerator:
[tex]\[ \sqrt{3} (3 + 2 \sqrt{x}) = 3 \sqrt{3} + 2 \sqrt{3} \sqrt{x} \][/tex]
However, we can represent the original denominator [tex]\(3 - 2 \sqrt{x}\)[/tex] in a negative form:
[tex]\[ 3 - 2 \sqrt{x} = -(2 \sqrt{x} - 3) \][/tex]
Thus, rewriting the expression:
[tex]\[ \frac{\sqrt{3}}{3 - 2 \sqrt{x}} = \frac{\sqrt{3}}{-(2 \sqrt{x} - 3)} = -\frac{\sqrt{3}}{2 \sqrt{x} - 3} \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ -\frac{\sqrt{3}}{2 \sqrt{x} - 3} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.