Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's find the first and second derivatives of the function [tex]\( h(x) = \tan(3x + 5) \)[/tex] step by step.
### Step 1: First Derivative [tex]\( h'(x) \)[/tex]
First, recall the derivative of the tangent function:
[tex]\[ \frac{d}{dx} [\tan(u)] = \sec^2(u) \cdot \frac{du}{dx} \][/tex]
Given [tex]\( h(x) = \tan(3x + 5) \)[/tex], let's set [tex]\( u = 3x + 5 \)[/tex]. Then we need to find the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} [3x + 5] = 3 \][/tex]
Using the chain rule:
[tex]\[ h'(x) = \frac{d}{dx} [\tan(3x + 5)] = \sec^2(3x + 5) \cdot \frac{d}{dx} [3x + 5] = \sec^2(3x + 5) \cdot 3 \][/tex]
Recall the trigonometric identity:
[tex]\[ \sec^2(u) = 1 + \tan^2(u) \][/tex]
Thus, we can express the first derivative as:
[tex]\[ h'(x) = 3 \sec^2(3x + 5) = 3 (1 + \tan^2(3x + 5)) \][/tex]
Since [tex]\( h(x) = \tan(3x + 5) \)[/tex], we have:
[tex]\[ h'(x) = 3 (1 + \tan^2(3x + 5)) \][/tex]
This simplifies to:
[tex]\[ h'(x) = 3 (\tan^2(3x + 5) + 1) \][/tex]
Finally:
[tex]\[ h'(x) = 3\tan^2(3x + 5) + 3 \][/tex]
### Step 2: Second Derivative [tex]\( h''(x) \)[/tex]
Now, let's move on to the second derivative [tex]\( h''(x) \)[/tex]. Using the result from [tex]\( h'(x) \)[/tex], we get:
[tex]\[ h'(x) = 3\tan^2(3x + 5) + 3 \][/tex]
We need to differentiate [tex]\( h'(x) \)[/tex] again with respect to [tex]\( x \)[/tex]. Let's break it into two parts.
1. Differentiate [tex]\( 3\tan^2(3x + 5) \)[/tex]:
[tex]\[ \frac{d}{dx} [3\tan^2(3x + 5)] = 3 \cdot 2\tan(3x + 5) \cdot \frac{d}{dx} [\tan(3x + 5)] \][/tex]
Now, we need [tex]\( \frac{d}{dx} [\tan(3x + 5)] \)[/tex]:
[tex]\[ \frac{d}{dx} [\tan(3x + 5)] = \sec^2(3x + 5) \cdot 3 \][/tex]
Therefore:
[tex]\[ 6\tan(3x + 5) \cdot 3\sec^2(3x + 5) = 18\tan(3x + 5) \sec^2(3x + 5) \][/tex]
2. Differentiate the constant term [tex]\( 3 \)[/tex], which is [tex]\( 0 \)[/tex].
Combining these results, the second derivative is:
[tex]\[ h''(x) = 18\tan(3x + 5) \sec^2(3x + 5) \][/tex]
Recall:
[tex]\[ \sec^2(u) = 1 + \tan^2(u) \][/tex]
[tex]\[ \sec^2(3x + 5) = 1 + \tan^2(3x + 5) \][/tex]
Now substitute back:
[tex]\[ h''(x) = 18\tan(3x + 5) (1 + \tan^2(3x + 5)) \][/tex]
Simplifying:
[tex]\[ h''(x) = 18\tan(3x + 5)(1 + \tan^2(3x + 5)) = 18\tan(3x + 5) (1 + \tan^2(3x + 5)) \][/tex]
Since [tex]\( 6 \times 3 = 18 \)[/tex], we can write it as:
[tex]\[ h''(x) = 3 (6 \tan(3x + 5)^2 + 6) \tan(3x + 5) \][/tex]
However, preserving the simplified form:
[tex]\[ h''(x) = 3 (6\tan^2(3x + 5) + 6) \tan(3x + 5) \][/tex]
Hence, the final answers are:
[tex]\[ \begin{array}{l} h^{\prime}(x) = 3\tan^2(3x + 5) + 3 \\ h^{\prime \prime}(x) = 3 (6\tan^2(3x + 5) + 6) \tan(3x + 5) \end{array} \][/tex]
### Step 1: First Derivative [tex]\( h'(x) \)[/tex]
First, recall the derivative of the tangent function:
[tex]\[ \frac{d}{dx} [\tan(u)] = \sec^2(u) \cdot \frac{du}{dx} \][/tex]
Given [tex]\( h(x) = \tan(3x + 5) \)[/tex], let's set [tex]\( u = 3x + 5 \)[/tex]. Then we need to find the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} [3x + 5] = 3 \][/tex]
Using the chain rule:
[tex]\[ h'(x) = \frac{d}{dx} [\tan(3x + 5)] = \sec^2(3x + 5) \cdot \frac{d}{dx} [3x + 5] = \sec^2(3x + 5) \cdot 3 \][/tex]
Recall the trigonometric identity:
[tex]\[ \sec^2(u) = 1 + \tan^2(u) \][/tex]
Thus, we can express the first derivative as:
[tex]\[ h'(x) = 3 \sec^2(3x + 5) = 3 (1 + \tan^2(3x + 5)) \][/tex]
Since [tex]\( h(x) = \tan(3x + 5) \)[/tex], we have:
[tex]\[ h'(x) = 3 (1 + \tan^2(3x + 5)) \][/tex]
This simplifies to:
[tex]\[ h'(x) = 3 (\tan^2(3x + 5) + 1) \][/tex]
Finally:
[tex]\[ h'(x) = 3\tan^2(3x + 5) + 3 \][/tex]
### Step 2: Second Derivative [tex]\( h''(x) \)[/tex]
Now, let's move on to the second derivative [tex]\( h''(x) \)[/tex]. Using the result from [tex]\( h'(x) \)[/tex], we get:
[tex]\[ h'(x) = 3\tan^2(3x + 5) + 3 \][/tex]
We need to differentiate [tex]\( h'(x) \)[/tex] again with respect to [tex]\( x \)[/tex]. Let's break it into two parts.
1. Differentiate [tex]\( 3\tan^2(3x + 5) \)[/tex]:
[tex]\[ \frac{d}{dx} [3\tan^2(3x + 5)] = 3 \cdot 2\tan(3x + 5) \cdot \frac{d}{dx} [\tan(3x + 5)] \][/tex]
Now, we need [tex]\( \frac{d}{dx} [\tan(3x + 5)] \)[/tex]:
[tex]\[ \frac{d}{dx} [\tan(3x + 5)] = \sec^2(3x + 5) \cdot 3 \][/tex]
Therefore:
[tex]\[ 6\tan(3x + 5) \cdot 3\sec^2(3x + 5) = 18\tan(3x + 5) \sec^2(3x + 5) \][/tex]
2. Differentiate the constant term [tex]\( 3 \)[/tex], which is [tex]\( 0 \)[/tex].
Combining these results, the second derivative is:
[tex]\[ h''(x) = 18\tan(3x + 5) \sec^2(3x + 5) \][/tex]
Recall:
[tex]\[ \sec^2(u) = 1 + \tan^2(u) \][/tex]
[tex]\[ \sec^2(3x + 5) = 1 + \tan^2(3x + 5) \][/tex]
Now substitute back:
[tex]\[ h''(x) = 18\tan(3x + 5) (1 + \tan^2(3x + 5)) \][/tex]
Simplifying:
[tex]\[ h''(x) = 18\tan(3x + 5)(1 + \tan^2(3x + 5)) = 18\tan(3x + 5) (1 + \tan^2(3x + 5)) \][/tex]
Since [tex]\( 6 \times 3 = 18 \)[/tex], we can write it as:
[tex]\[ h''(x) = 3 (6 \tan(3x + 5)^2 + 6) \tan(3x + 5) \][/tex]
However, preserving the simplified form:
[tex]\[ h''(x) = 3 (6\tan^2(3x + 5) + 6) \tan(3x + 5) \][/tex]
Hence, the final answers are:
[tex]\[ \begin{array}{l} h^{\prime}(x) = 3\tan^2(3x + 5) + 3 \\ h^{\prime \prime}(x) = 3 (6\tan^2(3x + 5) + 6) \tan(3x + 5) \end{array} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.