At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine whether the series [tex]\(\sum_{n=1}^{\infty} \frac{6^n}{3^n - 2}\)[/tex] converges or diverges, let's utilize the Comparison Test by comparing it to a simpler geometric series. Here's a detailed step-by-step solution:
1. Rewrite the general term:
Consider the general term of the series:
[tex]\[ a_n = \frac{6^n}{3^n - 2} \][/tex]
2. Find a simpler expression for comparison:
To simplify our comparison, note that for large [tex]\(n\)[/tex], the term [tex]\(3^n\)[/tex] in the denominator will dominate the constant [tex]\(2\)[/tex]. Therefore, [tex]\(\frac{6^n}{3^n - 2}\)[/tex] behaves similarly to [tex]\(\frac{6^n}{3^n}\)[/tex] when [tex]\(n\)[/tex] is large.
Simplifying [tex]\(\frac{6^n}{3^n}\)[/tex]:
[tex]\[ \frac{6^n}{3^n} = \left( \frac{6}{3} \right)^n = 2^n \][/tex]
3. Consider a geometric series for comparison:
The term [tex]\(2^n\)[/tex] suggests that we can compare our original series with the geometric series [tex]\(\sum_{n=1}^{\infty} 2^n \)[/tex].
4. Analyze the comparison:
For large [tex]\(n\)[/tex], we have:
[tex]\[ \frac{6^n}{3^n - 2} \approx \frac{6^n}{3^n} = 2^n \][/tex]
So, the terms of the given series are approximately equal to the terms of the geometric series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex].
5. Examine the geometric series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex]:
The geometric series [tex]\(\sum_{n=1}^{\infty} ar^n\)[/tex] converges if [tex]\(|r| < 1\)[/tex]. In this case, the series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex] has [tex]\(r = 2\)[/tex], which is greater than 1.
Since [tex]\(|2| > 1\)[/tex], the geometric series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex] diverges.
6. Comparison Test Conclusion:
Since the terms of our original series [tex]\(\frac{6^n}{3^n - 2}\)[/tex] are eventually larger than or comparable to the terms of the divergent geometric series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex], the original series must also diverge.
Therefore, the correct answer is:
The series diverges.
1. Rewrite the general term:
Consider the general term of the series:
[tex]\[ a_n = \frac{6^n}{3^n - 2} \][/tex]
2. Find a simpler expression for comparison:
To simplify our comparison, note that for large [tex]\(n\)[/tex], the term [tex]\(3^n\)[/tex] in the denominator will dominate the constant [tex]\(2\)[/tex]. Therefore, [tex]\(\frac{6^n}{3^n - 2}\)[/tex] behaves similarly to [tex]\(\frac{6^n}{3^n}\)[/tex] when [tex]\(n\)[/tex] is large.
Simplifying [tex]\(\frac{6^n}{3^n}\)[/tex]:
[tex]\[ \frac{6^n}{3^n} = \left( \frac{6}{3} \right)^n = 2^n \][/tex]
3. Consider a geometric series for comparison:
The term [tex]\(2^n\)[/tex] suggests that we can compare our original series with the geometric series [tex]\(\sum_{n=1}^{\infty} 2^n \)[/tex].
4. Analyze the comparison:
For large [tex]\(n\)[/tex], we have:
[tex]\[ \frac{6^n}{3^n - 2} \approx \frac{6^n}{3^n} = 2^n \][/tex]
So, the terms of the given series are approximately equal to the terms of the geometric series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex].
5. Examine the geometric series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex]:
The geometric series [tex]\(\sum_{n=1}^{\infty} ar^n\)[/tex] converges if [tex]\(|r| < 1\)[/tex]. In this case, the series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex] has [tex]\(r = 2\)[/tex], which is greater than 1.
Since [tex]\(|2| > 1\)[/tex], the geometric series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex] diverges.
6. Comparison Test Conclusion:
Since the terms of our original series [tex]\(\frac{6^n}{3^n - 2}\)[/tex] are eventually larger than or comparable to the terms of the divergent geometric series [tex]\(\sum_{n=1}^{\infty} 2^n\)[/tex], the original series must also diverge.
Therefore, the correct answer is:
The series diverges.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.