Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

What is the wavelength of the radio waves from a station broadcasting at 78 MHz? The speed of light is 3 × 108 m/s.

Sagot :

Answer:

To find the wavelength of the radio waves from a station broadcasting at 78 MHz, we can use the formula:

Wavelength (λ) = Speed of light (c) / Frequency (f)

Given that the speed of light (c) is 3 × 10^8 m/s and the frequency (f) is 78 MHz, we can convert the frequency to hertz (Hz) by multiplying it by 10^6:

f = 78 MHz = 78 × 10^6 Hz

Now, we can plug in the values into the formula:

Wavelength (λ) = Speed of light (c) / Frequency (f)

Wavelength (λ) = (3 × 10^8 m/s) / (78 × 10^6 Hz)

Wavelength (λ) = 3.84615385 × 10^(-6) m

Therefore, the wavelength of the radio waves from a station broadcasting at 78 MHz is approximately 3.846 × 10^(-6) meters.