Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

37. When the expression [tex]2x(x-4)-3(x+5)[/tex] is written in simplest form, the result is:

1. [tex]2x^2 - 11x - 15[/tex]
2. [tex]2x^2 - 11x + 5[/tex]
3. [tex]2x^2 - 3x - 19[/tex]
4. [tex]2x^2 - 3x + 1[/tex]

Sagot :

Certainly! Let's simplify the expression [tex]\(2x(x-4) - 3(x+5)\)[/tex] step by step.

1. Distribute the terms inside the parentheses:
[tex]\[ 2x(x-4) = 2x \cdot x - 2x \cdot 4 = 2x^2 - 8x \][/tex]
Similarly,
[tex]\[ -3(x+5) = -3 \cdot x - 3 \cdot 5 = -3x - 15 \][/tex]

2. Combine these results into one expression:
[tex]\[ 2x^2 - 8x - 3x - 15 \][/tex]

3. Now, combine the like terms:
[tex]\[ 2x^2 - 8x - 3x - 15 = 2x^2 - 11x - 15 \][/tex]

The expression in its simplest form is:
[tex]\[ 2x^2 - 11x - 15 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{1} \][/tex]