Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the derivative of the function [tex]\( f(x) = -2 x^{-8} - 3 x^{-5} \)[/tex], we'll use the power rule of differentiation. The power rule states that if [tex]\( f(x) = x^n \)[/tex], then [tex]\( f'(x) = nx^{n-1} \)[/tex].
Let's apply this rule to each term of the function.
1. Differentiate the first term [tex]\(-2 x^{-8}\)[/tex]:
Using the power rule:
[tex]\[ \frac{d}{dx}\left(-2 x^{-8}\right) = -2 \cdot (-8) x^{-8-1} = 16 x^{-9} \][/tex]
2. Differentiate the second term [tex]\(-3 x^{-5}\)[/tex]:
Using the power rule:
[tex]\[ \frac{d}{dx}\left(-3 x^{-5}\right) = -3 \cdot (-5) x^{-5-1} = 15 x^{-6} \][/tex]
3. Combine the derivatives:
Therefore, the derivative of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = 16 x^{-9} + 15 x^{-6} \][/tex]
To express the result more clearly, we can write the terms with positive exponents by moving them to the denominator:
[tex]\[ f'(x) = \frac{15}{x^6} + \frac{16}{x^9} \][/tex]
Thus, the derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{15}{x^6} + \frac{16}{x^9} \][/tex]
Let's apply this rule to each term of the function.
1. Differentiate the first term [tex]\(-2 x^{-8}\)[/tex]:
Using the power rule:
[tex]\[ \frac{d}{dx}\left(-2 x^{-8}\right) = -2 \cdot (-8) x^{-8-1} = 16 x^{-9} \][/tex]
2. Differentiate the second term [tex]\(-3 x^{-5}\)[/tex]:
Using the power rule:
[tex]\[ \frac{d}{dx}\left(-3 x^{-5}\right) = -3 \cdot (-5) x^{-5-1} = 15 x^{-6} \][/tex]
3. Combine the derivatives:
Therefore, the derivative of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = 16 x^{-9} + 15 x^{-6} \][/tex]
To express the result more clearly, we can write the terms with positive exponents by moving them to the denominator:
[tex]\[ f'(x) = \frac{15}{x^6} + \frac{16}{x^9} \][/tex]
Thus, the derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{15}{x^6} + \frac{16}{x^9} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.