Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Find the derivative of: [tex]f(x) = \frac{4 x^{10} - 10 x^6 - 4}{2 x^2}[/tex].

[tex]
f^{\prime}(x) =
[/tex]

[tex]
\square
[/tex]


Sagot :

To solve the problem, we need to find the derivative of the function:

[tex]\[ f(x) = \frac{4x^{10} - 10x^6 - 4}{2x^2} \][/tex]

Let's follow through the steps to simplify the function and then find its derivative.

### Step 1: Simplify the Function

First, we simplify the given function:

[tex]\[ f(x) = \frac{4x^{10} - 10x^6 - 4}{2x^2} \][/tex]

We can distribute the denominator [tex]\( 2x^2 \)[/tex] across each term in the numerator:

[tex]\[ f(x) = \frac{4x^{10}}{2x^2} - \frac{10x^6}{2x^2} - \frac{4}{2x^2} \][/tex]

Now simplify each fraction:

[tex]\[ f(x) = \frac{4x^{10}}{2x^2} = 2x^8 \][/tex]
[tex]\[ f(x) = \frac{10x^6}{2x^2} = 5x^4 \][/tex]
[tex]\[ f(x) = -\frac{4}{2x^2} = -\frac{2}{x^2} = -2x^{-2} \][/tex]

Putting it all together, we have:

[tex]\[ f(x) = 2x^8 - 5x^4 - 2x^{-2} \][/tex]

### Step 2: Find the Derivative

To find the derivative [tex]\( f'(x) \)[/tex], we need to differentiate each term:

[tex]\[ f(x) = 2x^8 - 5x^4 - 2x^{-2} \][/tex]

Let's find the derivatives term by term:

1. For [tex]\( 2x^8 \)[/tex]:

[tex]\[ \frac{d}{dx}[2x^8] = 16x^7 \][/tex]

2. For [tex]\( -5x^4 \)[/tex]:

[tex]\[ \frac{d}{dx}[-5x^4] = -20x^3 \][/tex]

3. For [tex]\( -2x^{-2} \)[/tex]:

[tex]\[ \frac{d}{dx}[-2x^{-2}] = 4x^{-3} \][/tex]

Combining all these results, the derivative of [tex]\( f(x) \)[/tex] is:

[tex]\[ f'(x) = 16x^7 - 20x^3 + 4x^{-3} \][/tex]

Therefore, the derivative [tex]\( f'(x) \)[/tex] of the given function is:

[tex]\[ f'(x) = \boxed{(20x^{9} - 30x^{5})/x^2 - 2(2x^{10} - 5x^{6} - 2)/x^3} \][/tex]