Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To graph the function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex], we will follow a step-by-step process to identify the key characteristics and plot important points on the coordinate plane.
### 1. Function Analysis
#### Domain:
The function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] involves a square root, which means the expression inside the square root, [tex]\( x-1 \)[/tex], must be non-negative. Therefore:
[tex]\[ x - 1 \geq 0 \][/tex]
[tex]\[ x \geq 1 \][/tex]
So, the domain of the function is [tex]\( x \in [1, \infty) \)[/tex].
#### Range:
For [tex]\( x \geq 1 \)[/tex], the expression [tex]\( \sqrt{x-1} \)[/tex] can take any non-negative value from 0 to [tex]\(\infty\)[/tex]. When [tex]\( \sqrt{x-1} \)[/tex] = 0, [tex]\( f(x) = 0 \)[/tex]. As [tex]\( x \to \infty \)[/tex], [tex]\( \sqrt{x-1} \to \infty \)[/tex], making [tex]\( f(x) = 3 \sqrt{x-1} \to \infty \)[/tex]. Hence, the range of [tex]\( f(x) \)[/tex] is [tex]\( [0, \infty) \)[/tex].
### 2. Important Points to Plot
Let's determine a few key points that lie on the function [tex]\( f(x) \)[/tex]:
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3 \sqrt{1 - 1} = 3 \times 0 = 0 \][/tex]
Point: [tex]\( (1, 0) \)[/tex]
- When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3 \sqrt{2 - 1} = 3 \times 1 = 3 \][/tex]
Point: [tex]\( (2, 3) \)[/tex]
- When [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 3 \sqrt{4 - 1} = 3 \sqrt{3} \approx 3 \times 1.732 \approx 5.196 \][/tex]
Point: [tex]\( (4, 5.196) \)[/tex]
- When [tex]\( x = 10 \)[/tex]:
[tex]\[ f(10) = 3 \sqrt{10 - 1} = 3 \sqrt{9} = 3 \times 3 = 9 \][/tex]
Point: [tex]\( (10, 9) \)[/tex]
### 3. Drawing the Graph
Using these points, we can sketch the graph of the function. Start by plotting the following points on the coordinate plane:
- [tex]\( (1, 0) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (4, 5.196) \)[/tex]
- [tex]\( (10, 9) \)[/tex]
These points are taken from the generated data:
[tex]\[ \begin{align*} (1.0, 0.0) & , (2.0, 3.0) \\ (4.0, 5.196) & , (10.0, 9.0) \end{align*} \][/tex]
### 4. Graph Shape Description
- The graph starts at [tex]\( (1, 0) \)[/tex] since [tex]\( f(1) = 0 \)[/tex].
- As [tex]\( x \)[/tex] increases, the function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] grows rapidly but in a smooth, continuous curve.
- There is a gradual steepening as [tex]\( x \)[/tex] increases because the square root function increases more slowly than a linear function.
![Graph](https://www4b.wolframalpha.com/Calculate/MSP/MSP77a8215dc0eb1g4985c7000036f5jj2d81i5dfa8e?MSPStoreType=image/gif&s=11)
### Summary
The graph of [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] is a curve that begins at the point [tex]\( (1, 0) \)[/tex] and rises gradually. It represents a square root function scaled by a factor of 3, starting at [tex]\( x = 1 \)[/tex] and increasing continuously. The plotted points provide a guide to draw the function accurately.
### 1. Function Analysis
#### Domain:
The function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] involves a square root, which means the expression inside the square root, [tex]\( x-1 \)[/tex], must be non-negative. Therefore:
[tex]\[ x - 1 \geq 0 \][/tex]
[tex]\[ x \geq 1 \][/tex]
So, the domain of the function is [tex]\( x \in [1, \infty) \)[/tex].
#### Range:
For [tex]\( x \geq 1 \)[/tex], the expression [tex]\( \sqrt{x-1} \)[/tex] can take any non-negative value from 0 to [tex]\(\infty\)[/tex]. When [tex]\( \sqrt{x-1} \)[/tex] = 0, [tex]\( f(x) = 0 \)[/tex]. As [tex]\( x \to \infty \)[/tex], [tex]\( \sqrt{x-1} \to \infty \)[/tex], making [tex]\( f(x) = 3 \sqrt{x-1} \to \infty \)[/tex]. Hence, the range of [tex]\( f(x) \)[/tex] is [tex]\( [0, \infty) \)[/tex].
### 2. Important Points to Plot
Let's determine a few key points that lie on the function [tex]\( f(x) \)[/tex]:
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3 \sqrt{1 - 1} = 3 \times 0 = 0 \][/tex]
Point: [tex]\( (1, 0) \)[/tex]
- When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3 \sqrt{2 - 1} = 3 \times 1 = 3 \][/tex]
Point: [tex]\( (2, 3) \)[/tex]
- When [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 3 \sqrt{4 - 1} = 3 \sqrt{3} \approx 3 \times 1.732 \approx 5.196 \][/tex]
Point: [tex]\( (4, 5.196) \)[/tex]
- When [tex]\( x = 10 \)[/tex]:
[tex]\[ f(10) = 3 \sqrt{10 - 1} = 3 \sqrt{9} = 3 \times 3 = 9 \][/tex]
Point: [tex]\( (10, 9) \)[/tex]
### 3. Drawing the Graph
Using these points, we can sketch the graph of the function. Start by plotting the following points on the coordinate plane:
- [tex]\( (1, 0) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (4, 5.196) \)[/tex]
- [tex]\( (10, 9) \)[/tex]
These points are taken from the generated data:
[tex]\[ \begin{align*} (1.0, 0.0) & , (2.0, 3.0) \\ (4.0, 5.196) & , (10.0, 9.0) \end{align*} \][/tex]
### 4. Graph Shape Description
- The graph starts at [tex]\( (1, 0) \)[/tex] since [tex]\( f(1) = 0 \)[/tex].
- As [tex]\( x \)[/tex] increases, the function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] grows rapidly but in a smooth, continuous curve.
- There is a gradual steepening as [tex]\( x \)[/tex] increases because the square root function increases more slowly than a linear function.
![Graph](https://www4b.wolframalpha.com/Calculate/MSP/MSP77a8215dc0eb1g4985c7000036f5jj2d81i5dfa8e?MSPStoreType=image/gif&s=11)
### Summary
The graph of [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] is a curve that begins at the point [tex]\( (1, 0) \)[/tex] and rises gradually. It represents a square root function scaled by a factor of 3, starting at [tex]\( x = 1 \)[/tex] and increasing continuously. The plotted points provide a guide to draw the function accurately.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.