Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Given the system of equations:
[tex]\[ \begin{aligned} 2x - y &= 12 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
Follow the steps to solve the system:
1. Step 1: Multiply the first equation by -5:
[tex]\[ -5(2x - y) = -5(12) \][/tex]
which results in:
[tex]\[ -10x + 5y = -60 \][/tex]
Now our system is:
[tex]\[ \begin{aligned} -10x + 5y &= -60 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
2. Step 2: Rewrite the system with the new equation from Step 1:
[tex]\[ \begin{aligned} -10x + 5y &= -60 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
3. Step 3: Subtract the second equation from the first:
[tex]\[ (-10x + 5y) - (-3x - 5y) = -60 - (-5) \][/tex]
Simplifying this, you get:
[tex]\[ -10x + 5y + 3x + 5y = -60 + 5 \][/tex]
[tex]\[ -7x + 10y = -55 \][/tex]
Since the first variable terms combine to [tex]\(-7x\)[/tex] and the constants on the right-hand side combine to [tex]\(-55\)[/tex], you end up with:
[tex]\[ -7x = -55 \][/tex]
This simplifies to:
[tex]\[ x = 5 \][/tex]
4. Now, substitute [tex]\(x = 5\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]. Choose [tex]\(2x - y = 12\)[/tex]:
[tex]\[ 2(5) - y = 12 \][/tex]
[tex]\[ 10 - y = 12 \][/tex]
[tex]\[ -y = 2 \][/tex]
[tex]\[ y = -2 \][/tex]
Thus, the solution to the original system of equations is [tex]\((x, y) = (5, -2)\)[/tex].
Given the steps and the solution, the correct statement about Step 3 is:
A. When the equation [tex]\( -3x - 5y = -5 \)[/tex] is subtracted from [tex]\( -10x + 5y = -60 \)[/tex], a third linear equation, [tex]\( -13x = -65 \)[/tex], is formed, and it shares a common solution with the original equations.
Therefore, the correct answer is:
A
[tex]\[ \begin{aligned} 2x - y &= 12 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
Follow the steps to solve the system:
1. Step 1: Multiply the first equation by -5:
[tex]\[ -5(2x - y) = -5(12) \][/tex]
which results in:
[tex]\[ -10x + 5y = -60 \][/tex]
Now our system is:
[tex]\[ \begin{aligned} -10x + 5y &= -60 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
2. Step 2: Rewrite the system with the new equation from Step 1:
[tex]\[ \begin{aligned} -10x + 5y &= -60 \\ -3x - 5y &= -5 \end{aligned} \][/tex]
3. Step 3: Subtract the second equation from the first:
[tex]\[ (-10x + 5y) - (-3x - 5y) = -60 - (-5) \][/tex]
Simplifying this, you get:
[tex]\[ -10x + 5y + 3x + 5y = -60 + 5 \][/tex]
[tex]\[ -7x + 10y = -55 \][/tex]
Since the first variable terms combine to [tex]\(-7x\)[/tex] and the constants on the right-hand side combine to [tex]\(-55\)[/tex], you end up with:
[tex]\[ -7x = -55 \][/tex]
This simplifies to:
[tex]\[ x = 5 \][/tex]
4. Now, substitute [tex]\(x = 5\)[/tex] back into one of the original equations to find [tex]\(y\)[/tex]. Choose [tex]\(2x - y = 12\)[/tex]:
[tex]\[ 2(5) - y = 12 \][/tex]
[tex]\[ 10 - y = 12 \][/tex]
[tex]\[ -y = 2 \][/tex]
[tex]\[ y = -2 \][/tex]
Thus, the solution to the original system of equations is [tex]\((x, y) = (5, -2)\)[/tex].
Given the steps and the solution, the correct statement about Step 3 is:
A. When the equation [tex]\( -3x - 5y = -5 \)[/tex] is subtracted from [tex]\( -10x + 5y = -60 \)[/tex], a third linear equation, [tex]\( -13x = -65 \)[/tex], is formed, and it shares a common solution with the original equations.
Therefore, the correct answer is:
A
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.