Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Given the systems of equations, we will determine the solutions for Systems A, B, and C, and then check which statements are true.
### System A:
[tex]\[ \begin{cases} 2x - 3y = 4 \\ 4x - y = 18 \end{cases} \][/tex]
By solving System A, we get the solution:
[tex]\[ x = 5, \; y = 2 \][/tex]
### System B:
[tex]\[ \begin{cases} 3x - 4y = 5 \\ y - 5x = 3 \end{cases} \][/tex]
By solving System B, we get the solution:
[tex]\[ x = -1, \; y = -2 \][/tex]
### System C:
[tex]\[ \begin{cases} 2x - 3y = 4 \\ 12x - 3y = 54 \end{cases} \][/tex]
By solving System C, we get the solution:
[tex]\[ x = 5, \; y = 2 \][/tex]
Now, let's analyze the given statements based on the solutions we found:
1. Systems B and C have the same solution.
- System B has the solution [tex]\( x = -1, \; y = -2 \)[/tex].
- System C has the solution [tex]\( x = 5, \; y = 2 \)[/tex].
Since the solutions are not the same, this statement is false.
2. System C simplifies to [tex]\(2x - 3y = 4\)[/tex] and [tex]\(4x - y = 18\)[/tex] by dividing the second equation by three.
Though not required for validation, let’s check:
- Original System C:
[tex]\[ \begin{cases} 2x - 3y = 4 \\ 12x - 3y = 54 \end{cases} \][/tex]
- Dividing the second equation by 3:
[tex]\[ \begin{cases} 2x - 3y = 4 \\ 4x - y = 18 \end{cases} \][/tex]
This is indeed System A. Thus, this statement would be true.
3. Systems A and B have different solutions.
- System A has the solution [tex]\( x = 5, \; y = 2 \)[/tex].
- System B has the solution [tex]\( x = -1, \; y = -2 \)[/tex].
Since the solutions are different, this statement is true.
4. All three systems have different solutions.
- System A and System C both have the solution [tex]\( x = 5, \; y = 2 \)[/tex].
- System B has the solution [tex]\( x = -1, \; y = -2 \)[/tex].
Since Systems A and C have the same solution, this statement is false.
5. Systems A and C have the same solution.
- System A has the solution [tex]\( x = 5, \; y = 2 \)[/tex].
- System C has the solution [tex]\( x = 5, \; y = 2 \)[/tex].
Since the solutions are the same, this statement is true.
Therefore, the correct statements are:
- Systems A and B have different solutions.
- Systems A and C have the same solution.
### System A:
[tex]\[ \begin{cases} 2x - 3y = 4 \\ 4x - y = 18 \end{cases} \][/tex]
By solving System A, we get the solution:
[tex]\[ x = 5, \; y = 2 \][/tex]
### System B:
[tex]\[ \begin{cases} 3x - 4y = 5 \\ y - 5x = 3 \end{cases} \][/tex]
By solving System B, we get the solution:
[tex]\[ x = -1, \; y = -2 \][/tex]
### System C:
[tex]\[ \begin{cases} 2x - 3y = 4 \\ 12x - 3y = 54 \end{cases} \][/tex]
By solving System C, we get the solution:
[tex]\[ x = 5, \; y = 2 \][/tex]
Now, let's analyze the given statements based on the solutions we found:
1. Systems B and C have the same solution.
- System B has the solution [tex]\( x = -1, \; y = -2 \)[/tex].
- System C has the solution [tex]\( x = 5, \; y = 2 \)[/tex].
Since the solutions are not the same, this statement is false.
2. System C simplifies to [tex]\(2x - 3y = 4\)[/tex] and [tex]\(4x - y = 18\)[/tex] by dividing the second equation by three.
Though not required for validation, let’s check:
- Original System C:
[tex]\[ \begin{cases} 2x - 3y = 4 \\ 12x - 3y = 54 \end{cases} \][/tex]
- Dividing the second equation by 3:
[tex]\[ \begin{cases} 2x - 3y = 4 \\ 4x - y = 18 \end{cases} \][/tex]
This is indeed System A. Thus, this statement would be true.
3. Systems A and B have different solutions.
- System A has the solution [tex]\( x = 5, \; y = 2 \)[/tex].
- System B has the solution [tex]\( x = -1, \; y = -2 \)[/tex].
Since the solutions are different, this statement is true.
4. All three systems have different solutions.
- System A and System C both have the solution [tex]\( x = 5, \; y = 2 \)[/tex].
- System B has the solution [tex]\( x = -1, \; y = -2 \)[/tex].
Since Systems A and C have the same solution, this statement is false.
5. Systems A and C have the same solution.
- System A has the solution [tex]\( x = 5, \; y = 2 \)[/tex].
- System C has the solution [tex]\( x = 5, \; y = 2 \)[/tex].
Since the solutions are the same, this statement is true.
Therefore, the correct statements are:
- Systems A and B have different solutions.
- Systems A and C have the same solution.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.