Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let us start by analyzing System A:
[tex]\[ \begin{array}{c} 5x - y = -11 \quad \text{(1)} \\ 3x - 2y = -8 \quad \text{(2)} \end{array} \][/tex]
We were instructed to obtain system B by replacing the second equation by adding it to the first equation multiplied by -2. Let's follow these steps:
1. Multiply equation (1) by -2:
[tex]\[ -2 \times (5x - y) = -2 \times (-11) \][/tex]
[tex]\[ -10x + 2y = 22 \quad \text{(3)} \][/tex]
2. Add equation (3) to equation (2):
[tex]\[ (3x - 2y) + (-10x + 2y) = -8 + 22 \][/tex]
[tex]\[ 3x - 10x = -8 + 22 \][/tex]
[tex]\[ -7x = 14 \quad \text{(4)} \][/tex]
Thus, System B is:
[tex]\[ \begin{array}{c} 5x - y = -11 \\ -7x = 14 \end{array} \][/tex]
Now, let's verify if the solution [tex]\((-2, 1)\)[/tex] is valid for both systems.
For the first equation in System A and System B:
[tex]\[ 5(-2) - 1 = -10 - 1 = -11 \][/tex]
The left-hand side equals the right-hand side, so this solution satisfies the first equation.
For the second equation in System A:
[tex]\[ 3(-2) - 2(1) = -6 - 2 = -8 \][/tex]
The left-hand side equals the right-hand side, so this solution satisfies the second equation of System A.
For the second equation in System B:
[tex]\[ -7(-2) = 14 \][/tex]
The left-hand side equals the right-hand side, so this solution satisfies the second equation of System B as well.
Hence, the solution [tex]\((-2, 1)\)[/tex] is valid for both Systems A and B. Therefore, the correct answer is:
D. The second equation in system B is [tex]\(-7x = 14\)[/tex]. The solution to system B will be the same as the solution to system A.
[tex]\[ \begin{array}{c} 5x - y = -11 \quad \text{(1)} \\ 3x - 2y = -8 \quad \text{(2)} \end{array} \][/tex]
We were instructed to obtain system B by replacing the second equation by adding it to the first equation multiplied by -2. Let's follow these steps:
1. Multiply equation (1) by -2:
[tex]\[ -2 \times (5x - y) = -2 \times (-11) \][/tex]
[tex]\[ -10x + 2y = 22 \quad \text{(3)} \][/tex]
2. Add equation (3) to equation (2):
[tex]\[ (3x - 2y) + (-10x + 2y) = -8 + 22 \][/tex]
[tex]\[ 3x - 10x = -8 + 22 \][/tex]
[tex]\[ -7x = 14 \quad \text{(4)} \][/tex]
Thus, System B is:
[tex]\[ \begin{array}{c} 5x - y = -11 \\ -7x = 14 \end{array} \][/tex]
Now, let's verify if the solution [tex]\((-2, 1)\)[/tex] is valid for both systems.
For the first equation in System A and System B:
[tex]\[ 5(-2) - 1 = -10 - 1 = -11 \][/tex]
The left-hand side equals the right-hand side, so this solution satisfies the first equation.
For the second equation in System A:
[tex]\[ 3(-2) - 2(1) = -6 - 2 = -8 \][/tex]
The left-hand side equals the right-hand side, so this solution satisfies the second equation of System A.
For the second equation in System B:
[tex]\[ -7(-2) = 14 \][/tex]
The left-hand side equals the right-hand side, so this solution satisfies the second equation of System B as well.
Hence, the solution [tex]\((-2, 1)\)[/tex] is valid for both Systems A and B. Therefore, the correct answer is:
D. The second equation in system B is [tex]\(-7x = 14\)[/tex]. The solution to system B will be the same as the solution to system A.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.