Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's go through the steps methodically to prove that [tex]$(AB)^T=B^T A^T$[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
### Step 1: Calculate the matrix product [tex]\(AB\)[/tex]
First, we multiply matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Given:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
[tex]\[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ AB = \begin{pmatrix} (2 \cdot 2 + 4 \cdot 0) & (2 \cdot 3 + 4 \cdot 4) \\ (3 \cdot 2 + 1 \cdot 0) & (3 \cdot 3 + 1 \cdot 4) \end{pmatrix} = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ AB = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
### Step 2: Transpose the product [tex]\(AB\)[/tex]
Next, we find the transpose of the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix}^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 3: Transpose matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now we calculate the transposes of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A^T = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ B^T = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(B^T A^T\)[/tex]
Finally, we multiply the transposed matrices [tex]\(B^T\)[/tex] and [tex]\(A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ B^T A^T = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 4) & (2 \cdot 3 + 0 \cdot 1) \\ (3 \cdot 2 + 4 \cdot 4) & (3 \cdot 3 + 4 \cdot 1) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 5: Conclude by comparing the results
We see that:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
and
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Therefore,
[tex]\[ (AB)^T = B^T A^T \][/tex]
We have shown that for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the equality [tex]\((AB)^T = B^T A^T\)[/tex] holds true.
### Step 1: Calculate the matrix product [tex]\(AB\)[/tex]
First, we multiply matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Given:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
[tex]\[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ AB = \begin{pmatrix} (2 \cdot 2 + 4 \cdot 0) & (2 \cdot 3 + 4 \cdot 4) \\ (3 \cdot 2 + 1 \cdot 0) & (3 \cdot 3 + 1 \cdot 4) \end{pmatrix} = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ AB = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
### Step 2: Transpose the product [tex]\(AB\)[/tex]
Next, we find the transpose of the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix}^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 3: Transpose matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now we calculate the transposes of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A^T = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ B^T = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(B^T A^T\)[/tex]
Finally, we multiply the transposed matrices [tex]\(B^T\)[/tex] and [tex]\(A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ B^T A^T = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 4) & (2 \cdot 3 + 0 \cdot 1) \\ (3 \cdot 2 + 4 \cdot 4) & (3 \cdot 3 + 4 \cdot 1) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 5: Conclude by comparing the results
We see that:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
and
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Therefore,
[tex]\[ (AB)^T = B^T A^T \][/tex]
We have shown that for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the equality [tex]\((AB)^T = B^T A^T\)[/tex] holds true.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.