Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's go through the steps methodically to prove that [tex]$(AB)^T=B^T A^T$[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
### Step 1: Calculate the matrix product [tex]\(AB\)[/tex]
First, we multiply matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Given:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
[tex]\[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ AB = \begin{pmatrix} (2 \cdot 2 + 4 \cdot 0) & (2 \cdot 3 + 4 \cdot 4) \\ (3 \cdot 2 + 1 \cdot 0) & (3 \cdot 3 + 1 \cdot 4) \end{pmatrix} = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ AB = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
### Step 2: Transpose the product [tex]\(AB\)[/tex]
Next, we find the transpose of the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix}^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 3: Transpose matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now we calculate the transposes of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A^T = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ B^T = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(B^T A^T\)[/tex]
Finally, we multiply the transposed matrices [tex]\(B^T\)[/tex] and [tex]\(A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ B^T A^T = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 4) & (2 \cdot 3 + 0 \cdot 1) \\ (3 \cdot 2 + 4 \cdot 4) & (3 \cdot 3 + 4 \cdot 1) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 5: Conclude by comparing the results
We see that:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
and
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Therefore,
[tex]\[ (AB)^T = B^T A^T \][/tex]
We have shown that for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the equality [tex]\((AB)^T = B^T A^T\)[/tex] holds true.
### Step 1: Calculate the matrix product [tex]\(AB\)[/tex]
First, we multiply matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Given:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
[tex]\[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ AB = \begin{pmatrix} (2 \cdot 2 + 4 \cdot 0) & (2 \cdot 3 + 4 \cdot 4) \\ (3 \cdot 2 + 1 \cdot 0) & (3 \cdot 3 + 1 \cdot 4) \end{pmatrix} = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ AB = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
### Step 2: Transpose the product [tex]\(AB\)[/tex]
Next, we find the transpose of the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix}^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 3: Transpose matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now we calculate the transposes of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A^T = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ B^T = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(B^T A^T\)[/tex]
Finally, we multiply the transposed matrices [tex]\(B^T\)[/tex] and [tex]\(A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ B^T A^T = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 4) & (2 \cdot 3 + 0 \cdot 1) \\ (3 \cdot 2 + 4 \cdot 4) & (3 \cdot 3 + 4 \cdot 1) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 5: Conclude by comparing the results
We see that:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
and
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Therefore,
[tex]\[ (AB)^T = B^T A^T \][/tex]
We have shown that for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the equality [tex]\((AB)^T = B^T A^T\)[/tex] holds true.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.