Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's go through the steps methodically to prove that [tex]$(AB)^T=B^T A^T$[/tex] for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
### Step 1: Calculate the matrix product [tex]\(AB\)[/tex]
First, we multiply matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Given:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
[tex]\[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ AB = \begin{pmatrix} (2 \cdot 2 + 4 \cdot 0) & (2 \cdot 3 + 4 \cdot 4) \\ (3 \cdot 2 + 1 \cdot 0) & (3 \cdot 3 + 1 \cdot 4) \end{pmatrix} = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ AB = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
### Step 2: Transpose the product [tex]\(AB\)[/tex]
Next, we find the transpose of the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix}^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 3: Transpose matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now we calculate the transposes of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A^T = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ B^T = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(B^T A^T\)[/tex]
Finally, we multiply the transposed matrices [tex]\(B^T\)[/tex] and [tex]\(A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ B^T A^T = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 4) & (2 \cdot 3 + 0 \cdot 1) \\ (3 \cdot 2 + 4 \cdot 4) & (3 \cdot 3 + 4 \cdot 1) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 5: Conclude by comparing the results
We see that:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
and
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Therefore,
[tex]\[ (AB)^T = B^T A^T \][/tex]
We have shown that for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the equality [tex]\((AB)^T = B^T A^T\)[/tex] holds true.
### Step 1: Calculate the matrix product [tex]\(AB\)[/tex]
First, we multiply matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
Given:
[tex]\[ A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
[tex]\[ AB = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ AB = \begin{pmatrix} (2 \cdot 2 + 4 \cdot 0) & (2 \cdot 3 + 4 \cdot 4) \\ (3 \cdot 2 + 1 \cdot 0) & (3 \cdot 3 + 1 \cdot 4) \end{pmatrix} = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ AB = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix} \][/tex]
### Step 2: Transpose the product [tex]\(AB\)[/tex]
Next, we find the transpose of the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 22 \\ 6 & 13 \end{pmatrix}^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 3: Transpose matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]
Now we calculate the transposes of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A^T = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ B^T = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \][/tex]
### Step 4: Calculate the product [tex]\(B^T A^T\)[/tex]
Finally, we multiply the transposed matrices [tex]\(B^T\)[/tex] and [tex]\(A^T\)[/tex]:
[tex]\[ B^T A^T = \begin{pmatrix} 2 & 0 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \][/tex]
Carrying out the multiplication element-wise:
[tex]\[ B^T A^T = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 4) & (2 \cdot 3 + 0 \cdot 1) \\ (3 \cdot 2 + 4 \cdot 4) & (3 \cdot 3 + 4 \cdot 1) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Thus,
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
### Step 5: Conclude by comparing the results
We see that:
[tex]\[ (AB)^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
and
[tex]\[ B^T A^T = \begin{pmatrix} 4 & 6 \\ 22 & 13 \end{pmatrix} \][/tex]
Therefore,
[tex]\[ (AB)^T = B^T A^T \][/tex]
We have shown that for the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex], the equality [tex]\((AB)^T = B^T A^T\)[/tex] holds true.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.