At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the linear mass density ([tex]\( \mu = \frac{m}{L} \)[/tex]) of the string given the speed of the transverse wave and the tension, we can follow these steps:
1. Understand the given formula:
The speed of the wave [tex]\( v \)[/tex] on a string is given by the formula:
[tex]\[ v = \sqrt{\frac{T}{\mu}} \][/tex]
where:
- [tex]\( v \)[/tex] is the speed of the wave,
- [tex]\( T \)[/tex] is the tension in the string,
- [tex]\( \mu \)[/tex] is the linear mass density ([tex]\( \frac{m}{L} \)[/tex]).
2. Given values:
From the problem, we know:
- The tension [tex]\( T \)[/tex] is [tex]\( 10.0 \, N \)[/tex].
- The speed of the wave [tex]\( v \)[/tex] is [tex]\( 5.0 \, m/s \)[/tex]. This is described as the wave speed in the simulation.
3. Rearrange the formula to solve for [tex]\( \mu \)[/tex]:
Starting with the given formula:
[tex]\[ v = \sqrt{\frac{T}{\mu}} \][/tex]
Square both sides of the equation to eliminate the square root:
[tex]\[ v^2 = \frac{T}{\mu} \][/tex]
Solve for [tex]\( \mu \)[/tex] by rearranging the equation:
[tex]\[ \mu = \frac{T}{v^2} \][/tex]
4. Substitute the known values:
- [tex]\( T = 10.0 \, N \)[/tex]
- [tex]\( v = 5.0 \, m/s \)[/tex]
Substitute these values into the equation:
[tex]\[ \mu = \frac{10.0 \, N}{(5.0 \, m/s)^2} \][/tex]
5. Calculate the result:
[tex]\[ \mu = \frac{10.0}{25.0} \][/tex]
[tex]\[ \mu = 0.4 \, \frac{kg}{m} \][/tex]
Thus, the linear mass density of the string is [tex]\( 0.4 \, \frac{kg}{m} \)[/tex].
1. Understand the given formula:
The speed of the wave [tex]\( v \)[/tex] on a string is given by the formula:
[tex]\[ v = \sqrt{\frac{T}{\mu}} \][/tex]
where:
- [tex]\( v \)[/tex] is the speed of the wave,
- [tex]\( T \)[/tex] is the tension in the string,
- [tex]\( \mu \)[/tex] is the linear mass density ([tex]\( \frac{m}{L} \)[/tex]).
2. Given values:
From the problem, we know:
- The tension [tex]\( T \)[/tex] is [tex]\( 10.0 \, N \)[/tex].
- The speed of the wave [tex]\( v \)[/tex] is [tex]\( 5.0 \, m/s \)[/tex]. This is described as the wave speed in the simulation.
3. Rearrange the formula to solve for [tex]\( \mu \)[/tex]:
Starting with the given formula:
[tex]\[ v = \sqrt{\frac{T}{\mu}} \][/tex]
Square both sides of the equation to eliminate the square root:
[tex]\[ v^2 = \frac{T}{\mu} \][/tex]
Solve for [tex]\( \mu \)[/tex] by rearranging the equation:
[tex]\[ \mu = \frac{T}{v^2} \][/tex]
4. Substitute the known values:
- [tex]\( T = 10.0 \, N \)[/tex]
- [tex]\( v = 5.0 \, m/s \)[/tex]
Substitute these values into the equation:
[tex]\[ \mu = \frac{10.0 \, N}{(5.0 \, m/s)^2} \][/tex]
5. Calculate the result:
[tex]\[ \mu = \frac{10.0}{25.0} \][/tex]
[tex]\[ \mu = 0.4 \, \frac{kg}{m} \][/tex]
Thus, the linear mass density of the string is [tex]\( 0.4 \, \frac{kg}{m} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.