Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which ordered pair is a solution to the equation:
[tex]\[ -4x + 7 = 2y - 3, \][/tex]
we will substitute the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from each ordered pair into the equation and check if the equality holds.
### Step 1: Test the pair [tex]\((2, 1)\)[/tex].
Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex] into the equation:
[tex]\[ -4(2) + 7 = 2(1) - 3. \][/tex]
Now compute each side of the equation:
[tex]\[ -4 \cdot 2 + 7 = -8 + 7 = -1, \][/tex]
[tex]\[ 2 \cdot 1 - 3 = 2 - 3 = -1. \][/tex]
Since [tex]\(-1 = -1\)[/tex], the pair [tex]\((2, 1)\)[/tex] satisfies the equation.
### Step 2: Test the pair [tex]\((5, -5)\)[/tex].
Substitute [tex]\(x = 5\)[/tex] and [tex]\(y = -5\)[/tex] into the equation:
[tex]\[ -4(5) + 7 = 2(-5) - 3. \][/tex]
Now compute each side of the equation:
[tex]\[ -4 \cdot 5 + 7 = -20 + 7 = -13, \][/tex]
[tex]\[ 2 \cdot (-5) - 3 = -10 - 3 = -13. \][/tex]
Since [tex]\(-13 = -13\)[/tex], the pair [tex]\((5, -5)\)[/tex] also satisfies the equation.
### Conclusion:
Both ordered pairs, [tex]\((2, 1)\)[/tex] and [tex]\((5, -5)\)[/tex], are solutions of the equation. Therefore, the correct answer is:
[tex]\[ \boxed{\text{Both } (2,1) \text{ and } (5,-5)} \][/tex]
So, the answer is (C) Both [tex]\((2,1)\)[/tex] and [tex]\((5,-5)\)[/tex].
[tex]\[ -4x + 7 = 2y - 3, \][/tex]
we will substitute the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from each ordered pair into the equation and check if the equality holds.
### Step 1: Test the pair [tex]\((2, 1)\)[/tex].
Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex] into the equation:
[tex]\[ -4(2) + 7 = 2(1) - 3. \][/tex]
Now compute each side of the equation:
[tex]\[ -4 \cdot 2 + 7 = -8 + 7 = -1, \][/tex]
[tex]\[ 2 \cdot 1 - 3 = 2 - 3 = -1. \][/tex]
Since [tex]\(-1 = -1\)[/tex], the pair [tex]\((2, 1)\)[/tex] satisfies the equation.
### Step 2: Test the pair [tex]\((5, -5)\)[/tex].
Substitute [tex]\(x = 5\)[/tex] and [tex]\(y = -5\)[/tex] into the equation:
[tex]\[ -4(5) + 7 = 2(-5) - 3. \][/tex]
Now compute each side of the equation:
[tex]\[ -4 \cdot 5 + 7 = -20 + 7 = -13, \][/tex]
[tex]\[ 2 \cdot (-5) - 3 = -10 - 3 = -13. \][/tex]
Since [tex]\(-13 = -13\)[/tex], the pair [tex]\((5, -5)\)[/tex] also satisfies the equation.
### Conclusion:
Both ordered pairs, [tex]\((2, 1)\)[/tex] and [tex]\((5, -5)\)[/tex], are solutions of the equation. Therefore, the correct answer is:
[tex]\[ \boxed{\text{Both } (2,1) \text{ and } (5,-5)} \][/tex]
So, the answer is (C) Both [tex]\((2,1)\)[/tex] and [tex]\((5,-5)\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.