Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the system of equations:
[tex]\[ \left\{ \begin{array}{l} 2x + y = -4 \\ x - y = 4 \end{array} \right. \][/tex]
we will follow a detailed, step-by-step approach.
### Step 1: Write down the equations
We have the following two equations:
1. [tex]\( 2x + y = -4 \)[/tex]
2. [tex]\( x - y = 4 \)[/tex]
### Step 2: Solve one equation for one variable
Let's solve the second equation for [tex]\( x \)[/tex]:
[tex]\[ x - y = 4 \][/tex]
Adding [tex]\( y \)[/tex] to both sides, we get:
[tex]\[ x = 4 + y \][/tex]
### Step 3: Substitute the expression from Step 2 into the first equation
Now, substitute [tex]\( x = 4 + y \)[/tex] into the first equation [tex]\( 2x + y = -4 \)[/tex]:
[tex]\[ 2(4 + y) + y = -4 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Expand and combine like terms:
[tex]\[ 8 + 2y + y = -4 \][/tex]
[tex]\[ 8 + 3y = -4 \][/tex]
Subtract 8 from both sides:
[tex]\[ 3y = -4 - 8 \][/tex]
[tex]\[ 3y = -12 \][/tex]
Divide by 3:
[tex]\[ y = -4 \][/tex]
### Step 5: Substitute [tex]\( y \)[/tex] back into the expression for [tex]\( x \)[/tex]
Using the expression [tex]\( x = 4 + y \)[/tex]:
[tex]\[ x = 4 + (-4) \][/tex]
[tex]\[ x = 0 \][/tex]
### Conclusion
Therefore, the solution to the system of equations is:
[tex]\[ x = 0 \][/tex]
[tex]\[ y = -4 \][/tex]
So, the solution to the system of equations is [tex]\((0, -4)\)[/tex].
[tex]\[ \left\{ \begin{array}{l} 2x + y = -4 \\ x - y = 4 \end{array} \right. \][/tex]
we will follow a detailed, step-by-step approach.
### Step 1: Write down the equations
We have the following two equations:
1. [tex]\( 2x + y = -4 \)[/tex]
2. [tex]\( x - y = 4 \)[/tex]
### Step 2: Solve one equation for one variable
Let's solve the second equation for [tex]\( x \)[/tex]:
[tex]\[ x - y = 4 \][/tex]
Adding [tex]\( y \)[/tex] to both sides, we get:
[tex]\[ x = 4 + y \][/tex]
### Step 3: Substitute the expression from Step 2 into the first equation
Now, substitute [tex]\( x = 4 + y \)[/tex] into the first equation [tex]\( 2x + y = -4 \)[/tex]:
[tex]\[ 2(4 + y) + y = -4 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Expand and combine like terms:
[tex]\[ 8 + 2y + y = -4 \][/tex]
[tex]\[ 8 + 3y = -4 \][/tex]
Subtract 8 from both sides:
[tex]\[ 3y = -4 - 8 \][/tex]
[tex]\[ 3y = -12 \][/tex]
Divide by 3:
[tex]\[ y = -4 \][/tex]
### Step 5: Substitute [tex]\( y \)[/tex] back into the expression for [tex]\( x \)[/tex]
Using the expression [tex]\( x = 4 + y \)[/tex]:
[tex]\[ x = 4 + (-4) \][/tex]
[tex]\[ x = 0 \][/tex]
### Conclusion
Therefore, the solution to the system of equations is:
[tex]\[ x = 0 \][/tex]
[tex]\[ y = -4 \][/tex]
So, the solution to the system of equations is [tex]\((0, -4)\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.