Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the system of equations:
[tex]\[ \left\{ \begin{array}{l} 2x + y = -4 \\ x - y = 4 \end{array} \right. \][/tex]
we will follow a detailed, step-by-step approach.
### Step 1: Write down the equations
We have the following two equations:
1. [tex]\( 2x + y = -4 \)[/tex]
2. [tex]\( x - y = 4 \)[/tex]
### Step 2: Solve one equation for one variable
Let's solve the second equation for [tex]\( x \)[/tex]:
[tex]\[ x - y = 4 \][/tex]
Adding [tex]\( y \)[/tex] to both sides, we get:
[tex]\[ x = 4 + y \][/tex]
### Step 3: Substitute the expression from Step 2 into the first equation
Now, substitute [tex]\( x = 4 + y \)[/tex] into the first equation [tex]\( 2x + y = -4 \)[/tex]:
[tex]\[ 2(4 + y) + y = -4 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Expand and combine like terms:
[tex]\[ 8 + 2y + y = -4 \][/tex]
[tex]\[ 8 + 3y = -4 \][/tex]
Subtract 8 from both sides:
[tex]\[ 3y = -4 - 8 \][/tex]
[tex]\[ 3y = -12 \][/tex]
Divide by 3:
[tex]\[ y = -4 \][/tex]
### Step 5: Substitute [tex]\( y \)[/tex] back into the expression for [tex]\( x \)[/tex]
Using the expression [tex]\( x = 4 + y \)[/tex]:
[tex]\[ x = 4 + (-4) \][/tex]
[tex]\[ x = 0 \][/tex]
### Conclusion
Therefore, the solution to the system of equations is:
[tex]\[ x = 0 \][/tex]
[tex]\[ y = -4 \][/tex]
So, the solution to the system of equations is [tex]\((0, -4)\)[/tex].
[tex]\[ \left\{ \begin{array}{l} 2x + y = -4 \\ x - y = 4 \end{array} \right. \][/tex]
we will follow a detailed, step-by-step approach.
### Step 1: Write down the equations
We have the following two equations:
1. [tex]\( 2x + y = -4 \)[/tex]
2. [tex]\( x - y = 4 \)[/tex]
### Step 2: Solve one equation for one variable
Let's solve the second equation for [tex]\( x \)[/tex]:
[tex]\[ x - y = 4 \][/tex]
Adding [tex]\( y \)[/tex] to both sides, we get:
[tex]\[ x = 4 + y \][/tex]
### Step 3: Substitute the expression from Step 2 into the first equation
Now, substitute [tex]\( x = 4 + y \)[/tex] into the first equation [tex]\( 2x + y = -4 \)[/tex]:
[tex]\[ 2(4 + y) + y = -4 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Expand and combine like terms:
[tex]\[ 8 + 2y + y = -4 \][/tex]
[tex]\[ 8 + 3y = -4 \][/tex]
Subtract 8 from both sides:
[tex]\[ 3y = -4 - 8 \][/tex]
[tex]\[ 3y = -12 \][/tex]
Divide by 3:
[tex]\[ y = -4 \][/tex]
### Step 5: Substitute [tex]\( y \)[/tex] back into the expression for [tex]\( x \)[/tex]
Using the expression [tex]\( x = 4 + y \)[/tex]:
[tex]\[ x = 4 + (-4) \][/tex]
[tex]\[ x = 0 \][/tex]
### Conclusion
Therefore, the solution to the system of equations is:
[tex]\[ x = 0 \][/tex]
[tex]\[ y = -4 \][/tex]
So, the solution to the system of equations is [tex]\((0, -4)\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.