Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem, we need to determine the amounts invested at two different interest rates given a set of conditions. Let [tex]\( x \)[/tex] be the amount invested at [tex]\( 8\% \)[/tex] and [tex]\( y \)[/tex] be the amount invested at [tex]\( 5\% \)[/tex]. We are given the following conditions:
1. There is \[tex]$1100 more invested at \( 8\% \) than at \( 5\% \): \[ x = y + 1100 \] 2. The total annual interest received from both investments is \$[/tex]530:
[tex]\[ 0.08x + 0.05y = 530 \][/tex]
Now, let's solve the system of equations step-by-step using the method of addition.
Step 1: Substitute the expression for [tex]\( x \)[/tex] from the first equation into the second equation.
Given:
[tex]\[ x = y + 1100 \][/tex]
Substitute [tex]\( x \)[/tex] in the second equation:
[tex]\[ 0.08(y + 1100) + 0.05y = 530 \][/tex]
Step 2: Distribute the [tex]\( 0.08 \)[/tex] in the equation.
[tex]\[ 0.08y + 0.08 \times 1100 + 0.05y = 530 \][/tex]
This simplifies to:
[tex]\[ 0.08y + 88 + 0.05y = 530 \][/tex]
Step 3: Combine like terms.
[tex]\[ (0.08y + 0.05y) + 88 = 530 \][/tex]
[tex]\[ 0.13y + 88 = 530 \][/tex]
Step 4: Isolate [tex]\( y \)[/tex] by subtracting 88 from both sides.
[tex]\[ 0.13y = 530 - 88 \][/tex]
[tex]\[ 0.13y = 442 \][/tex]
Step 5: Solve for [tex]\( y \)[/tex] by dividing both sides by 0.13.
[tex]\[ y = \frac{442}{0.13} \][/tex]
[tex]\[ y = 3400 \][/tex]
Step 6: Substitute the value of [tex]\( y \)[/tex] back into the first equation to find [tex]\( x \)[/tex].
[tex]\[ x = y + 1100 \][/tex]
[tex]\[ x = 3400 + 1100 \][/tex]
[tex]\[ x = 4500 \][/tex]
Therefore, the amounts invested are:
- [tex]\(\$4500\)[/tex] at [tex]\( 8\% \)[/tex]
- [tex]\(\$3400\)[/tex] at [tex]\( 5\% \)[/tex]
So the final answers are:
[tex]\[ \$4500 \text{ invested at } 8\% \][/tex]
[tex]\[ \$3400 \text{ invested at } 5\% \][/tex]
1. There is \[tex]$1100 more invested at \( 8\% \) than at \( 5\% \): \[ x = y + 1100 \] 2. The total annual interest received from both investments is \$[/tex]530:
[tex]\[ 0.08x + 0.05y = 530 \][/tex]
Now, let's solve the system of equations step-by-step using the method of addition.
Step 1: Substitute the expression for [tex]\( x \)[/tex] from the first equation into the second equation.
Given:
[tex]\[ x = y + 1100 \][/tex]
Substitute [tex]\( x \)[/tex] in the second equation:
[tex]\[ 0.08(y + 1100) + 0.05y = 530 \][/tex]
Step 2: Distribute the [tex]\( 0.08 \)[/tex] in the equation.
[tex]\[ 0.08y + 0.08 \times 1100 + 0.05y = 530 \][/tex]
This simplifies to:
[tex]\[ 0.08y + 88 + 0.05y = 530 \][/tex]
Step 3: Combine like terms.
[tex]\[ (0.08y + 0.05y) + 88 = 530 \][/tex]
[tex]\[ 0.13y + 88 = 530 \][/tex]
Step 4: Isolate [tex]\( y \)[/tex] by subtracting 88 from both sides.
[tex]\[ 0.13y = 530 - 88 \][/tex]
[tex]\[ 0.13y = 442 \][/tex]
Step 5: Solve for [tex]\( y \)[/tex] by dividing both sides by 0.13.
[tex]\[ y = \frac{442}{0.13} \][/tex]
[tex]\[ y = 3400 \][/tex]
Step 6: Substitute the value of [tex]\( y \)[/tex] back into the first equation to find [tex]\( x \)[/tex].
[tex]\[ x = y + 1100 \][/tex]
[tex]\[ x = 3400 + 1100 \][/tex]
[tex]\[ x = 4500 \][/tex]
Therefore, the amounts invested are:
- [tex]\(\$4500\)[/tex] at [tex]\( 8\% \)[/tex]
- [tex]\(\$3400\)[/tex] at [tex]\( 5\% \)[/tex]
So the final answers are:
[tex]\[ \$4500 \text{ invested at } 8\% \][/tex]
[tex]\[ \$3400 \text{ invested at } 5\% \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.